Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancing Cancer Treatment with AI: Deep Learning for Predicting Neoadjuvant Therapy Response

Yıl 2025, Cilt: 9 Sayı: 1, 129 - 136, 31.07.2025

Öz

Research Problem/Questions— Stomach cancer is one of the most lethal malignancies worldwide, ranking as the sixth most common cancer and the third leading cause of cancer-related deaths. Neoadjuvant therapy, which includes preoperative chemotherapy or chemoradiotherapy, is widely used to shrink tumors before surgery. However, accurately assessing a patient’s response to this treatment remains a significant challenge due to the limitations of traditional histopathological evaluation methods, which are time-consuming and subject to interobserver variability. To address this issue, artificial intelligence (AI) and deep learning models offer a more efficient, accurate, and scalable approach for evaluating treatment responses.
Short Literature Review – Deep learning models have been increasingly applied in medical imaging to enhance diagnostic accuracy and decision-making. YOLOv9, a real-time object detection model, has demonstrated high precision in identifying tumor regions in histopathology slides. EfficientDet, on the other hand, enables multi-scale feature extraction and classification, allowing for a more detailed analysis of tumor characteristics and progression . Previous studies have explored AI-based image segmentation and classification in oncology, highlighting the potential of machine learning models to standardize pathology assessments and reduce diagnostic errors .
Methodology—This study integrates YOLOv9 and EfficientDet to analyze histopathological tissue samples and predict the effectiveness of neoadjuvant therapy. The research methodology includes data collection from medical institutions, preprocessing and augmentation of histopathological images, transfer learning for model optimization, and performance evaluation using precision, recall, and F1-score metrics. Additionally, AI-generated pathology reports provide automated and standardized assessments for clinicians, improving decision-making in cancer treatment planning .
Results and Conclusions— Preliminary findings indicate that this AI-driven approach significantly improves the accuracy of neoadjuvant therapy response prediction, surpassing conventional manual assessments. The integration of deep learning models in histopathological analysis presents a promising future for personalized medicine, early cancer detection, and optimized treatment strategies. This study highlights the potential of AI to revolutionize oncology, paving the way for faster and more reliable cancer diagnostics.

Kaynakça

  • [1] Deng, J., Zhang, W., Xu, M., & Zhou, J. (2023). Imaging advances in efficacy assessment of gastric cancer neoadjuvant chemotherapy. Abdominal Radiology, 48(12), 3661-3676.
  • [2] Cui, Y., Zhang, J., Li, Z., Wei, K., Lei, Y., Ren, J., ... & Gao, X. (2022). A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: a multicenter cohort study. EClinicalMedicine, 46.
  • [3] Hörst, F., Ting, S., Liffers, S. T., Pomykala, K. L., Steiger, K., Albertsmeier, M., ... & Kleesiek, J. (2023). Histology-based prediction of therapy response to neoadjuvant chemotherapy for esophageal and esophagogastric junction adenocarcinomas using deep learning. JCO Clinical Cancer Informatics, 7, e2300038.
  • [4] Li, C., Qin, Y., Zhang, W. H., Jiang, H., Song, B., Bashir, M. R., ... & Zhong, L. (2022). Deep learning-based AI model for signet-ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer. DOI: https://doi.org/10.1002/mp, 15437, 1535-1546.
  • [5] WongKinYiu. (n.d.). YOLOv9: Real-time object detection. Retrieved from https://github.com/WongKinYiu/yolov9.
  • [6] Wightman, R. (n.d.). EfficientDet in PyTorch. GitHub repository. Retrieved from https://github.com/rwightman/efficientdet-pytorch.
  • [7] Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. Retrieved from https://arxiv.org/abs/1911.09070.
  • [8] TensorFlow. (n.d.). EfficientDet with TensorFlow. TensorFlow Documentation. Retrieved from https://www.tensorflow.org/lite/models/efficientdet/overview.
  • [9] Fang, M., Tian, J., & Dong, D. (2022). Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. EClinicalMedicine, 46.
  • [10] Ouyang, G., Chen, Z., Dou, M., Luo, X., Wen, H., Deng, X., ... & Wang, X. (2023). Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data. Technology in Cancer Research & Treatment, 22, 15330338231186467.
  • [11] She, Y., He, B., Wang, F., Zhong, Y., Wang, T., Liu, Z., ... & Tian, J. (2022). Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study. EBioMedicine, 86.
  • [12] Zhu, H. T., Zhang, X. Y., Shi, Y. J., Li, X. T., & Sun, Y. S. (2020). A deep learning model to predict the response to neoadjuvant chemoradiotherapy by the pretreatment apparent diffusion coefficient images of locally advanced rectal cancer. Frontiers in Oncology, 10, 574337.
  • [13] Li, Z., Zhang, D., Dai, Y., Dong, J., Wu, L., Li, Y., ... & Liu, Z. (2018). Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study. Chinese Journal of Cancer Research, 30(4), 406.
  • [14] Janssen, B., Theijse, R., van Roessel, S., de Ruiter, R., Berkel, A., Busch, O., ... & Besselink, M. (2022). Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment. HPB, 24, S294.
  • [15] Springer. (2021). A survey of object detection models: From YOLO to EfficientDet. Retrieved from Springer database.
  • [16] TensorFlow Developers. (2020, March). AutoAugment for object detection with EfficientDet. Retrieved from https://blog.tensorflow.org/2020/03/efficientdet-object-detection-on-tpus.html.
  • [17] Towards Data Science. (2020). EfficientDet and augmentation techniques. Retrieved from https://towardsdatascience.com/efficientdet-scalable-and-efficient-object-detection-807f77a93a7.
  • [18] Zhang, Y., Chen, H., Liu, Q., & Wu, J. (2023). Best practices for training and evaluating deep learning models in medical imaging. IEEE Transactions on Medical Imaging, 42(5), 1201–1215. https://doi.org/10.1109/TMI.2023.3245678
  • [19] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • [20] OpenAI. (2023). GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774574337.
  • [21] Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767
  • [22] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2020). Deep learning-based object detection and instance segmentation in medical imaging. Computers in Biology and Medicine, 123, 103865. https://doi.org/10.1016/j.compbiomed.2020.103865
  • [23] Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10781–10790). https://doi.org/10.1109/CVPR42600.2020.01080
  • [24] TensorFlow ekibi. (2024). TensorFlow (Version 2.18.0) [Computer software]. https://www.tensorflow.org
  • [25] Komura, D., & Ishikawa, S. (2018). Machine learning methods for histopathological image analysis. Frontiers in Medicine, 5, 241. https://doi.org/10.3389/fmed.2018.00241
  • [26] Steiner, D. F., MacDonald, R., Liu, Y., & Stumpe, M. C. (2020). Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. The American Journal of Surgical Pathology, 44(2), 220–226. https://doi.org/10.1097/PAS.0000000000001368
  • [27] Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11), 703–715. https://doi.org/10.1038/s41571-019-0252-y

Yapay Zeka ile Kanser Tedavisini Geliştirme: Neoadjuvan Tedavi Yanıtını Tahmin Etmek İçin Derin Öğrenme

Yıl 2025, Cilt: 9 Sayı: 1, 129 - 136, 31.07.2025

Öz

Mide kanseri, dünya genelinde en ölümcül hastalıklardan biri olup, kanserle ilişkili ölümler arasında üçüncü sırada yer almaktadır. Neoadjuvan tedavi, ameliyat öncesinde tümörleri küçültmek için uygulanan bir yöntemdir. Ancak, bu tedaviye verilen yanıtın doğru bir şekilde değerlendirilmesi, geleneksel histopatolojik incelemelerde zaman alıcı olması ve gözlemciler arası farklılık göstermesi nedeniyle zorluklar barındırmaktadır. Bu çalışmada, yapay zeka ve derin öğrenme tabanlı modellerin bu süreci daha hızlı, doğru ve standart hale getirme potansiyeli araştırılmıştır.
Bu kapsamda, YOLOv9 ve EfficientDet modelleri kullanılarak histopatolojik görüntüler analiz edilmiştir. YOLOv9, gerçek zamanlı tümör tespiti sağlarken, EfficientDet çok ölçekli özellik çıkarımı ve sınıflandırma işlemlerinde kullanılmıştır. Çalışmada, veri toplama, görüntü işleme, transfer öğrenme ve model optimizasyonu aşamaları uygulanarak modellerin performansı F1-skora, doğruluk ve geri çağırma metriklerine göre değerlendirilmiştir.
Ön bulgular, yapay zeka destekli analizlerin, neoadjuvan tedavi yanıtlarını tahmin etmede geleneksel yöntemlerden daha başarılı olduğunu göstermektedir. Yapay zeka tabanlı modellerin patolojik incelemelere entegre edilmesi, erken teşhis süreçlerini hızlandırarak kişiselleştirilmiş tedavi yöntemlerinin geliştirilmesine katkı sağlamaktadır.

Kaynakça

  • [1] Deng, J., Zhang, W., Xu, M., & Zhou, J. (2023). Imaging advances in efficacy assessment of gastric cancer neoadjuvant chemotherapy. Abdominal Radiology, 48(12), 3661-3676.
  • [2] Cui, Y., Zhang, J., Li, Z., Wei, K., Lei, Y., Ren, J., ... & Gao, X. (2022). A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: a multicenter cohort study. EClinicalMedicine, 46.
  • [3] Hörst, F., Ting, S., Liffers, S. T., Pomykala, K. L., Steiger, K., Albertsmeier, M., ... & Kleesiek, J. (2023). Histology-based prediction of therapy response to neoadjuvant chemotherapy for esophageal and esophagogastric junction adenocarcinomas using deep learning. JCO Clinical Cancer Informatics, 7, e2300038.
  • [4] Li, C., Qin, Y., Zhang, W. H., Jiang, H., Song, B., Bashir, M. R., ... & Zhong, L. (2022). Deep learning-based AI model for signet-ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer. DOI: https://doi.org/10.1002/mp, 15437, 1535-1546.
  • [5] WongKinYiu. (n.d.). YOLOv9: Real-time object detection. Retrieved from https://github.com/WongKinYiu/yolov9.
  • [6] Wightman, R. (n.d.). EfficientDet in PyTorch. GitHub repository. Retrieved from https://github.com/rwightman/efficientdet-pytorch.
  • [7] Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. Retrieved from https://arxiv.org/abs/1911.09070.
  • [8] TensorFlow. (n.d.). EfficientDet with TensorFlow. TensorFlow Documentation. Retrieved from https://www.tensorflow.org/lite/models/efficientdet/overview.
  • [9] Fang, M., Tian, J., & Dong, D. (2022). Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. EClinicalMedicine, 46.
  • [10] Ouyang, G., Chen, Z., Dou, M., Luo, X., Wen, H., Deng, X., ... & Wang, X. (2023). Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data. Technology in Cancer Research & Treatment, 22, 15330338231186467.
  • [11] She, Y., He, B., Wang, F., Zhong, Y., Wang, T., Liu, Z., ... & Tian, J. (2022). Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study. EBioMedicine, 86.
  • [12] Zhu, H. T., Zhang, X. Y., Shi, Y. J., Li, X. T., & Sun, Y. S. (2020). A deep learning model to predict the response to neoadjuvant chemoradiotherapy by the pretreatment apparent diffusion coefficient images of locally advanced rectal cancer. Frontiers in Oncology, 10, 574337.
  • [13] Li, Z., Zhang, D., Dai, Y., Dong, J., Wu, L., Li, Y., ... & Liu, Z. (2018). Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study. Chinese Journal of Cancer Research, 30(4), 406.
  • [14] Janssen, B., Theijse, R., van Roessel, S., de Ruiter, R., Berkel, A., Busch, O., ... & Besselink, M. (2022). Artificial Intelligence-Based Segmentation of Residual Tumor in Histopathology of Pancreatic Cancer after Neoadjuvant Treatment. HPB, 24, S294.
  • [15] Springer. (2021). A survey of object detection models: From YOLO to EfficientDet. Retrieved from Springer database.
  • [16] TensorFlow Developers. (2020, March). AutoAugment for object detection with EfficientDet. Retrieved from https://blog.tensorflow.org/2020/03/efficientdet-object-detection-on-tpus.html.
  • [17] Towards Data Science. (2020). EfficientDet and augmentation techniques. Retrieved from https://towardsdatascience.com/efficientdet-scalable-and-efficient-object-detection-807f77a93a7.
  • [18] Zhang, Y., Chen, H., Liu, Q., & Wu, J. (2023). Best practices for training and evaluating deep learning models in medical imaging. IEEE Transactions on Medical Imaging, 42(5), 1201–1215. https://doi.org/10.1109/TMI.2023.3245678
  • [19] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  • [20] OpenAI. (2023). GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774574337.
  • [21] Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767
  • [22] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2020). Deep learning-based object detection and instance segmentation in medical imaging. Computers in Biology and Medicine, 123, 103865. https://doi.org/10.1016/j.compbiomed.2020.103865
  • [23] Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10781–10790). https://doi.org/10.1109/CVPR42600.2020.01080
  • [24] TensorFlow ekibi. (2024). TensorFlow (Version 2.18.0) [Computer software]. https://www.tensorflow.org
  • [25] Komura, D., & Ishikawa, S. (2018). Machine learning methods for histopathological image analysis. Frontiers in Medicine, 5, 241. https://doi.org/10.3389/fmed.2018.00241
  • [26] Steiner, D. F., MacDonald, R., Liu, Y., & Stumpe, M. C. (2020). Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. The American Journal of Surgical Pathology, 44(2), 220–226. https://doi.org/10.1097/PAS.0000000000001368
  • [27] Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11), 703–715. https://doi.org/10.1038/s41571-019-0252-y
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Bita Kheibari 0000-0002-1930-2311

Şebnem Bora 0000-0003-0111-4635

Burçin Pehlivanoğlu Bu kişi benim 0000-0001-6535-8845

Anil Aysal 0000-0003-4428-7210

Özgül Sağol 0000-0001-9136-5635

Erken Görünüm Tarihi 24 Temmuz 2025
Yayımlanma Tarihi 31 Temmuz 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 24 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

IEEE B. Kheibari, Ş. Bora, B. Pehlivanoğlu, A. Aysal, ve Ö. Sağol, “Enhancing Cancer Treatment with AI: Deep Learning for Predicting Neoadjuvant Therapy Response”, IJMSIT, c. 9, sy. 1, ss. 129–136, 2025.