Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 8 Sayı: 1, 23 - 35, 01.06.2024

Öz

Proje Numarası

FMB-BAP 23-0594

Kaynakça

  • Acar, A.Ç., & Pehlivanoğlu, S. (2019). Biosynthesis of silver nanoparticles using rosa canina extract and ıts anti-cancer and antimetastatic activity on human colon adenocarcinoma cell line HT29. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 7 (2), 124-131.
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28 (4), 313-318. https://doi.org/10.1016/S0009-2614(02)01817-9
  • Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22 (1), 47-52. https://doi.org/10.1038/nbt927
  • Bolukbasi E. (2021). Expression analysis of some stress-related genes induced by cadmium on tomato (S. lycopersicum L.) plants. Hittite Journal of Science and Engineering, 8 (4), 339-345. doi.org/10.17350/HJSE19030000247
  • Bolukbasi, E. (2022). Influence of boron treatments on fatty acid desaturase metabolism in different safflower cultivars. Plant, Soil and Environment, 68 (10), 479-486. https://doi.org/10.17221/228/2022-PSE
  • Bolukbasi, E., Avuloglu-Yilmaz, E., & Yildirim, T. (2023). Effects of some flavor enhancer food additives on expression of cancer-related genes in MCF-7 and MCF-12A cells. Cogent Food & Agriculture, 9 (2), 2272469.
  • Brodo, I. M., Sharnoff, S. D., & Sharnoff, S. (2001). Lichens of North America. USA: Yale University Press. Cartus, A., & Schrenk, D. (2017). Current methods in risk assessment of genotoxic chemicals. Food and Chemical Toxicology, 106, 574-582. https://doi.org/10.1016/j.fct.2016.09.012
  • Çeşmeli, S., & Avci, B. C. (2019). Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. Journal of Drug Targeting, 27 (7), 762-766.
  • Dahoumane, S. A., Mechouet, M., & Wijesekera, K. (2017). Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861 (2), 309-320. https://doi.org/10.1016/j.bbagen.2016.09.020
  • Dey, A., Yogamoorthy, A., & Sundarapandian, S. (2018). Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4, 1-17.
  • Dolnik, C., Andreas, B. E. C. K., & Zarabska, D. (2010). Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics. The Lichenologist, 42 (4), 373-386.
  • El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 34 (4), 257-264. https://doi.org/10.1021/ar960016n
  • Esmeeta, A., Adhikary, S., Dharshnaa, P. Swarnamughi, Z., & Asim, K. (2022). Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomedicine & Pharmacotherapy, 153, 113384.
  • Genç, S., Pehlivanoğlu, S., Acar, Ç. A., & Yeşilot, Ş. (2021). Green synthesis of gold nanoparticles using vitis vinifera nut extract and evaluation of their anti-cancer properties in colon cancer (HT-29) cells. Medical Journal of Süleyman Demirel University, 28 (3), 455-464.
  • Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22 (23), 12827. https://doi.org/10.3390/ijms222312827
  • Hawryl, A., Hawryl, M., Hajnos-Stolarz, A., Abramek, J., Bogucka-Kocka, A., & Komsta, Ł. (2020). HPLC fingerprint analysis with the antioxidant and cytotoxic activities of selected lichens combined with the chemometric calculations. Molecules, 25 (18), 4301.
  • Huang, C. Y., Ju, D. T., Chang, C. F., Reddy, P. M., & Velmurugan, B. K. (2017). A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine, 7 (4), 156-169.
  • Hwang, Y., & Lee, M. (2012). Comparison of the AdvanSure human papillomavirus screening real-time PCR, the Abbott RealTime High Risk human papillomavirus test, and the Hybrid Capture human papillomavirus DNA test for the detection of human papillomavirus. Annals of Laboratory Medicine, 32 (3): 201-205. doi: 10.3343/alm.2012.32.3.201.
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13 (10), 2638-2650. https://doi.org/10.1039/c1gc15386b
  • Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19 (1), 15-20. https://doi.org/10.1016/S0167-7799(00)01538-3
  • Koca, F. D., & Duman, F. (2019). Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles, Applied Nanoscience, 9, 815-823.
  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., & Zoric, N. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27 (2-3), 95-125.
  • Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84 (2), 151-157. https://doi.org/10.1002/jctb.2023
  • Lee, H. J., Jeong, S. H., & Park, Y. H. (2016). Fabrication of copper oxide nanowires for efficient antimicrobial filters. ACS Applied Materials & Interfaces, 8 (5), 3315-3322. https://doi.org/10.1021/acsami.6b09898
  • Lin, H. L., Liaw, R. B., Chen, Y. H., Kang, T. C., & Lin, D. Y. (2019). Evaluation of cockerel spermatozoa viability and motility by a novel enzyme based cell viability assay. British Poultry Science, 60 (4), 467-471.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods, 25 (4), 402-408.
  • Masson, L. F., Sharp, L., Cotton, S. C., & Little, J. (2005). Cytochrome P-450 CYP1A1 Gene Polymorphisms and Risk of Breast Cancer: A HuGE Review. American Journal of Epidemiology, 161 (10), 901-915. https://doi.org/10.1093/aje/kwi121
  • Mendez-Encinas, M. A., Carvajal-Millan, E., & Rascón-Chu, A. (2019). Arabinoxylan-based particles: ın vitro antioxidant capacity and cytotoxicity on a human colon cell line. Medicina, 55, 349. https://doi.org/10.3390/medicina55070349
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31 (2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  • Mossman, T. (1983). Rapid colometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63.
  • Nash, T. H., Ryan, B. D., Gries, C., & Bungartz, F., (Eds.) (2002). Lichen Flora of the Greater Sonoran Desert Region. Vol 1.
  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156 (1-2), 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  • Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R.V. (2016). Nanoparticles: The next generation technology for sustainable agriculture. Microbial Inoculants in Sustainable Agricultural Productivity, 8, 289-300.
  • Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5 (3), 69-78. https://doi.org/10.1049/iet-nbt.2010.0033
  • Pino-Bodas, R., & Stenroos, S. (2021). Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microbial Ecology, 82 (1), 173-187.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8 (11), 7278-7308. https://doi.org/10.3390/ma8115377
  • Shende, P., Kasture, P., & Gaud, R. S. (2018). Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial cells, Nanomedicine, and Biotechnology, 46 (sup1): 413-22.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2016). Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16 (1), 84. https://doi.org/10.1186/s12951-018-0408-4
  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275 (1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012)
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Tolosa, L., Donato, M. T., & Gómez-Lechón, M. J. (2015). General cytotoxicity assessment by means of the MTT assay. Protocols in in vitro Hepatocyte Research. Humana Press. 333-348. https://doi.org/10.1007/978-1-4939-2074-7_26
  • Tucker, S. C. (2002). Flora Neotropica Monograf 78:Cladoniaceae. Sistem Botu., 27 (3), 637-648. Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. (2019). BCL-2 family isoforms in apoptosis and cancer. Cell Death & Differentiation, 10, 177. https://doi.org/10.1038/s41419-019-1407-6
  • Wong, G. Y. M., Diakos, C., Hugh, T. J., & Molloy, M. P. (2022). Proteomic profiling and biomarker discovery in colorectal liver metastases. International Journal of Molecular Sciences, 23 (11), 6091-6102.
  • Zamani, A.R., Mashayekhi, M.R., Jadid, M., & Faridvand, Y. (2018). Photo-modulation of zinc phthalocyanine-treated breast cancer cell line ZR-75-1 inhibited the normal tumor activity in vitro. Lasers in Medical Science, 33, 1969-1978.

An In Vitro Study: Assessment of Gene Expression Changes Induced by Nanoparticles Synthesized from Cladonia subulata Lichen on Colon Cell Lines

Yıl 2024, Cilt: 8 Sayı: 1, 23 - 35, 01.06.2024

Öz

Lichens are among the living organisms used for the biological synthesis of nanoparticles. Lichens are typically organisms where algae and fungi exist symbiotically. These organisms possess a wide array of biological components and are particularly rich in secondary metabolites. These characteristics give them an advantage in NPs synthesis. The use of microorganisms and plant sources in biological synthesis provides a less toxic and more environmentally friendly alternative compared to chemical methods. This study examined the effects of copper-based NPs obtained through biological synthesis from Cladonia subulata (L.) lichen on colon cancer cells from a molecular biology perspective. DLD-1 (colon cancer) and CCD18-Co (healthy colon) cell line were treated with concentrations of NPs ranging from 3.91 to 500 µg/ml for 24 hours, based on the evaluation of MTT test results, and changes in the expression levels of the CYP1A1 and BCL-2 genes involved in the cancer pathway were detected. In DLD-1 cells, a significant increase in the expression levels of the BCL-2 and CYP1A1 genes was observed following the application of Cu-NPs. This increase is believed to support the anti-cancer properties of Cu-NPs by affecting uncontrolled cell proliferation. Similarly, Cu-NPs increased the expression levels of the BCL-2 and CYP1A1 genes in CCD18-Co cells. The highest expression levels were observed at 125 µg/ml in both cell lines. These results suggest that Cu-NPs may also exhibit anti-cancer effects in healthy cells. The results support the evaluation of NPs obtained through biological synthesis as a potential strategy in cancer treatment.

Etik Beyan

There is no need for an ethics committee decision for the studies in the article.

Destekleyen Kurum

Amasya University Scientific Research Unit (Project No: FMB-BAP 23-0594).

Proje Numarası

FMB-BAP 23-0594

Teşekkür

The authors gratefully acknowledge the financial support of this work by Amasya University Scientific Research Unit (Project No: FMB-BAP 23-0594). And also, the authors acknowledge to Prof. Dr. Mehmet Gökhan HALICI at Erciyes University, Science Faculty and Department of Biology, for his valuable support.

Kaynakça

  • Acar, A.Ç., & Pehlivanoğlu, S. (2019). Biosynthesis of silver nanoparticles using rosa canina extract and ıts anti-cancer and antimetastatic activity on human colon adenocarcinoma cell line HT29. Mehmet Akif Ersoy University Journal of Health Sciences Institute, 7 (2), 124-131.
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28 (4), 313-318. https://doi.org/10.1016/S0009-2614(02)01817-9
  • Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22 (1), 47-52. https://doi.org/10.1038/nbt927
  • Bolukbasi E. (2021). Expression analysis of some stress-related genes induced by cadmium on tomato (S. lycopersicum L.) plants. Hittite Journal of Science and Engineering, 8 (4), 339-345. doi.org/10.17350/HJSE19030000247
  • Bolukbasi, E. (2022). Influence of boron treatments on fatty acid desaturase metabolism in different safflower cultivars. Plant, Soil and Environment, 68 (10), 479-486. https://doi.org/10.17221/228/2022-PSE
  • Bolukbasi, E., Avuloglu-Yilmaz, E., & Yildirim, T. (2023). Effects of some flavor enhancer food additives on expression of cancer-related genes in MCF-7 and MCF-12A cells. Cogent Food & Agriculture, 9 (2), 2272469.
  • Brodo, I. M., Sharnoff, S. D., & Sharnoff, S. (2001). Lichens of North America. USA: Yale University Press. Cartus, A., & Schrenk, D. (2017). Current methods in risk assessment of genotoxic chemicals. Food and Chemical Toxicology, 106, 574-582. https://doi.org/10.1016/j.fct.2016.09.012
  • Çeşmeli, S., & Avci, B. C. (2019). Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. Journal of Drug Targeting, 27 (7), 762-766.
  • Dahoumane, S. A., Mechouet, M., & Wijesekera, K. (2017). Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861 (2), 309-320. https://doi.org/10.1016/j.bbagen.2016.09.020
  • Dey, A., Yogamoorthy, A., & Sundarapandian, S. (2018). Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 4, 1-17.
  • Dolnik, C., Andreas, B. E. C. K., & Zarabska, D. (2010). Distinction of Cladonia rei and C. subulata based on molecular, chemical and morphological characteristics. The Lichenologist, 42 (4), 373-386.
  • El-Sayed, M. A. (2001). Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 34 (4), 257-264. https://doi.org/10.1021/ar960016n
  • Esmeeta, A., Adhikary, S., Dharshnaa, P. Swarnamughi, Z., & Asim, K. (2022). Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomedicine & Pharmacotherapy, 153, 113384.
  • Genç, S., Pehlivanoğlu, S., Acar, Ç. A., & Yeşilot, Ş. (2021). Green synthesis of gold nanoparticles using vitis vinifera nut extract and evaluation of their anti-cancer properties in colon cancer (HT-29) cells. Medical Journal of Süleyman Demirel University, 28 (3), 455-464.
  • Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22 (23), 12827. https://doi.org/10.3390/ijms222312827
  • Hawryl, A., Hawryl, M., Hajnos-Stolarz, A., Abramek, J., Bogucka-Kocka, A., & Komsta, Ł. (2020). HPLC fingerprint analysis with the antioxidant and cytotoxic activities of selected lichens combined with the chemometric calculations. Molecules, 25 (18), 4301.
  • Huang, C. Y., Ju, D. T., Chang, C. F., Reddy, P. M., & Velmurugan, B. K. (2017). A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine, 7 (4), 156-169.
  • Hwang, Y., & Lee, M. (2012). Comparison of the AdvanSure human papillomavirus screening real-time PCR, the Abbott RealTime High Risk human papillomavirus test, and the Hybrid Capture human papillomavirus DNA test for the detection of human papillomavirus. Annals of Laboratory Medicine, 32 (3): 201-205. doi: 10.3343/alm.2012.32.3.201.
  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13 (10), 2638-2650. https://doi.org/10.1039/c1gc15386b
  • Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19 (1), 15-20. https://doi.org/10.1016/S0167-7799(00)01538-3
  • Koca, F. D., & Duman, F. (2019). Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles, Applied Nanoscience, 9, 815-823.
  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., & Zoric, N. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27 (2-3), 95-125.
  • Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84 (2), 151-157. https://doi.org/10.1002/jctb.2023
  • Lee, H. J., Jeong, S. H., & Park, Y. H. (2016). Fabrication of copper oxide nanowires for efficient antimicrobial filters. ACS Applied Materials & Interfaces, 8 (5), 3315-3322. https://doi.org/10.1021/acsami.6b09898
  • Lin, H. L., Liaw, R. B., Chen, Y. H., Kang, T. C., & Lin, D. Y. (2019). Evaluation of cockerel spermatozoa viability and motility by a novel enzyme based cell viability assay. British Poultry Science, 60 (4), 467-471.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods, 25 (4), 402-408.
  • Masson, L. F., Sharp, L., Cotton, S. C., & Little, J. (2005). Cytochrome P-450 CYP1A1 Gene Polymorphisms and Risk of Breast Cancer: A HuGE Review. American Journal of Epidemiology, 161 (10), 901-915. https://doi.org/10.1093/aje/kwi121
  • Mendez-Encinas, M. A., Carvajal-Millan, E., & Rascón-Chu, A. (2019). Arabinoxylan-based particles: ın vitro antioxidant capacity and cytotoxicity on a human colon cell line. Medicina, 55, 349. https://doi.org/10.3390/medicina55070349
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31 (2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  • Mossman, T. (1983). Rapid colometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55-63.
  • Nash, T. H., Ryan, B. D., Gries, C., & Bungartz, F., (Eds.) (2002). Lichen Flora of the Greater Sonoran Desert Region. Vol 1.
  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156 (1-2), 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  • Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R.V. (2016). Nanoparticles: The next generation technology for sustainable agriculture. Microbial Inoculants in Sustainable Agricultural Productivity, 8, 289-300.
  • Park, Y., Hong, Y. N., Weyers, A., Kim, Y. S., & Linhardt, R. J. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnology, 5 (3), 69-78. https://doi.org/10.1049/iet-nbt.2010.0033
  • Pino-Bodas, R., & Stenroos, S. (2021). Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microbial Ecology, 82 (1), 173-187.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8 (11), 7278-7308. https://doi.org/10.3390/ma8115377
  • Shende, P., Kasture, P., & Gaud, R. S. (2018). Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial cells, Nanomedicine, and Biotechnology, 46 (sup1): 413-22.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2016). Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16 (1), 84. https://doi.org/10.1186/s12951-018-0408-4
  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275 (1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012)
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6 (2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Tolosa, L., Donato, M. T., & Gómez-Lechón, M. J. (2015). General cytotoxicity assessment by means of the MTT assay. Protocols in in vitro Hepatocyte Research. Humana Press. 333-348. https://doi.org/10.1007/978-1-4939-2074-7_26
  • Tucker, S. C. (2002). Flora Neotropica Monograf 78:Cladoniaceae. Sistem Botu., 27 (3), 637-648. Warren, C. F. A., Wong-Brown, M. W. & Bowden, N. A. (2019). BCL-2 family isoforms in apoptosis and cancer. Cell Death & Differentiation, 10, 177. https://doi.org/10.1038/s41419-019-1407-6
  • Wong, G. Y. M., Diakos, C., Hugh, T. J., & Molloy, M. P. (2022). Proteomic profiling and biomarker discovery in colorectal liver metastases. International Journal of Molecular Sciences, 23 (11), 6091-6102.
  • Zamani, A.R., Mashayekhi, M.R., Jadid, M., & Faridvand, Y. (2018). Photo-modulation of zinc phthalocyanine-treated breast cancer cell line ZR-75-1 inhibited the normal tumor activity in vitro. Lasers in Medical Science, 33, 1969-1978.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genotoksisite ve Sitotoksisite
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Sami Ata 0000-0003-0944-4276

Ece Avuloğlu Yılmaz 0000-0002-5164-3431

Şeyda Polatcı 0009-0001-4002-1151

Ekrem Bölükbaşı 0000-0003-3828-1226

Proje Numarası FMB-BAP 23-0594
Erken Görünüm Tarihi 29 Mayıs 2024
Yayımlanma Tarihi 1 Haziran 2024
Gönderilme Tarihi 2 Mayıs 2024
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Ata, M. S., Avuloğlu Yılmaz, E., Polatcı, Ş., Bölükbaşı, E. (2024). An In Vitro Study: Assessment of Gene Expression Changes Induced by Nanoparticles Synthesized from Cladonia subulata Lichen on Colon Cell Lines. International Journal of Nature and Life Sciences, 8(1), 23-35.