İnceleme Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 2 Sayı: 2, 166 - 177, 27.09.2024

Öz

Kaynakça

  • Thomas, W.M., et al., International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8 and US Patent Application No. 5,460,317, Dec.1991.
  • Ahmed, M.M.Z., El-Sayed Seleman, M.M., Fydrych, D., Çam G., A review on friction stir welding of dissimilar Al- and Mg-alloys: Scientometric analysis and strategies for achieving high-quality joints, Journal of Magnesium and Alloys, 2023, 11, 4082-4127.
  • Ahmed, M.M.Z., El-Sayed Seleman, M.M., Fydrych, D., Çam G., Friction stir welding in the aerospace industry: The current progress and state-of-the-art review, Materials, 2023, Vol. 16, Article Number: 2971.
  • Çam, G., Javaheri, V, Heidarzadeh, A., Advances in FSW and FSSW of dissimilar Al-alloy plates, J. Adhes. Sci. Technol., 2023, 37 (2), 162-194.
  • Khaliq, U.A., Yusof, F., Chen, Z., Mohd Isa, M.S., Çam, G., A comprehensive review on friction stir welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement, J. Mater. Res. Technol., 2023, 27, 4595-4624.
  • Kashaev, N., Ventzke, V., Çam, G., Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications, J. Manuf. Proces., 2018, 36, 571-600
  • Çam, G. and İpekoğlu, G., Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 2017, 91 (5-8), 1851-1866.
  • Çam, G., Friction stir welded structural materials: Beyond Al-alloys, Int. Mater. Rev., 2011, 56 (1), 1-48.
  • Mishra, R.S. and Ma, Z.Y., Friction stir welding and processing, Mater. Sci. Eng. R, 2005, 50, 1-78.
  • Threadgill, P.L., Leonard, A.J., Shercliff, H.R., Withers, P.J., Friction stir welding of aluminium alloys, Int. Mater. Rev., 2009, 54, 49-93.
  • Nandan, R., Debroy, T., Bhadeshia, H.K.D.H., Recent advances in friction-stir welding – Process, weldment structure and properties. Prog. Mater. Sci., 2008, 53, 980-1023.
  • Thomas, W.M., Johnson, K.I., Wiesner, C.S., Friction stir welding - Recent developments in tool and process technologies, Adv. Eng. Mater., 2003, 5, 485-490.
  • Mishra, R.S. and Mahoney, M.W., Eds., ‘Friction Stir Welding and Processing’, ASM International, Materials Park, Ohio, USA, 2007.
  • Singh, K., Singh, G., Singh, H., Review on friction stir welding of magnesium alloys, J. Magnes. Alloy., 2018, 6 (4), 399-416.
  • Padhy, G.K., Wu, C.S., Gao, S., Friction stir based welding and processing technologies – process, parameters, microstructures and applications – A review, J. Mater. Sci. Technol., 2018, 34 (1), 1-38.
  • Wahid, M.A., Khan, Z.A., Siddiquee, A.N., Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties, Transactions of Nonferrous Metal Society of China, 2018, 28 (2), 193-219.
  • Mironov, S., Sato, Y.S., Kokowa, H., Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review, J. Mater. Sci. Technol., 2018, 34 (1), 58-72.
  • Gangwar, K. and Ramulu, M., Friction-stir welding of titanium alloys: A review, Materials & Design, 2018, 141 (5), 230-255.
  • Venkatesh, K.M., Arivarsu, M., Manikandan, M., Arivazhagan, N., Review on friction stir welding of steels, Materials Today: Proceedings, 2018, 5 (5), 13227-13235.
  • Liu, F.C., Hovanski, Y., Miles, M.P., et al., A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 2018, 34, 39-57.
  • Yang, X.W., Fu ,T., Li, W.Y., Friction stir spot welding: A review on joint macro- and microstructure, property, and process modelling, Adv. Mater. Sci. Eng., 2014, 1, 1-11.
  • İpekoglu, G. and Çam, G., Farklı Al-alaşımı levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi’, Mühendis ve Makina, 2012, 53 (629), 40-47.
  • İpekoglu, G., Akçam, Ö., and Çam, G., Farklı kalınlıktaki AA6061-T6 levhaların sürtünme karıştırma kaynağı için uygun kaynak parametrelerinin belirlenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2018, 18 (1), 324-335.
  • Çam, G., Sürtünme karıştırma kaynağı (SKK) – Al-alaşımları için geliştirilmiş yeni bir kaynak teknolojisi, Mühendis ve Makina, 2005, 46 (541), 30-39.
  • Yavuz, H. and Çam, G., Yeni bir kaynak teknolojisi: Sürtünme karıştırma kaynağı, Endüstri ve Otomasyon, 2001, 51, 18-20.
  • Çam, G., Al-alaşımları için geliştirilen yeni kaynak yöntemleri, Kaynak Teknolojisi III. Ulusal Kongresi ve Sergisi, 19-20 October 2001, İstanbul, 2001, 267-277.
  • Thomas, W.M. and Nicholas, E.D., Friction stir welding for the transportation industries, Mater. Des., 1997, 18 (4-6), 269-273.
  • Dawes, C.J. and Thomas, W.M., Friction stir process welds aluminum alloys, Weld. J., 1996, 75, 41-45.
  • Kallee, S.W., Davenport, J., Nicholas, E.D., Railway manufacturers implement friction stir welding, Weld. J., 2002, 81, 47-50.
  • Johnsen, M.R., Friction stir welding takes off at Boeing, Weld. J., 1999, 78, 35-39.
  • Ding, J., Carter, R., Lawless, K., et al., Friction stir welding flies high at NASA, Weld. J., 2006, 85, 54-59.
  • Kawasaki Heavy Industries, Ltd., ‘A new method for light alloy joining - Friction spot joining, 2006-2014. www.kawasakirobot.com.
  • Von Strombeck, A., Çam, G., dos Santos, J.F., et al., ‘A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys’, Proc. of the TMS 2001 (Louisiana, USA, February 12-14, 2001), eds: S.K. Das, J.G. Kaufman, and T.J. Lienert, pub.: TMS, Warrendale, PA, 2001, pp. 249-264.
  • İpekoğlu, G., Erim, S., Gören Kıral, B., Çam, G., Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Mater., 2013, 51 (3), 155-163.
  • İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G., Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates, Mater. Tehnol., 2012, 46 (6), 627-632.
  • Çam, G., Güçlüer, S., Çakan, A., Serindağ, H.T., Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Mat.-wiss. u. Werkstofftech., 2009, 40 (8), 638-642.
  • İpekoğlu, G., Akçam, Ö., Çam, G., AA6061-T6 Al-alaşımı levhaların sürtünme karıştırma kaynağında levha kalınlığının kaynak hızına etkisi, Kaynak Teknolojisi X. Ulusal Kongre ve Sergisi (KAYKON 2017), 17-18 Kasım 2017, Ankara, 63-75.
  • Lee, W.B., Yeon, Y.M., Jung, S.B., Joint properties of friction stir welded AZ31B-H24 magnesium alloy, Mater. Sci. Technol., 2003, 19 (6), 785-790.
  • Afrin, N., Chen, D.L., Cao, X., Jahazi, M., Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy, Mater. Sci. Eng. A, 2008, 472 (1-2), 179-186.
  • Xie, G.M., Ma, Z.Y., Geng, L., Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy, Mater. Sci. Eng. A, 2008, 486 (1-2), 49-55.
  • Çam, G., Serindağ, H.T., Çakan, A., et al., The effect of weld parameters on friction stir welding of brass plates, Mat.-wiss. u. Werkstofftech., 2008, 39 (6), 394-399.
  • Çam, G., Mistikoglu, S., Pakdil, M., Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate, Weld. J., 2009, 88 (11), 225-232.
  • Küçükömeroğlu, T., Şentürk, E., Kara, L., et al., Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 2016, 25 (1), 320-326.
  • Avettand-Fenoel, M.-N. and Simar, A., A review about friction stir welding of metal matrix composites, Mater. Charact., 2016, 120, 1-17. [ Nami, H., Adgi, H., Sharifitabar, M., Shamabadi, H., Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des., 2011, 32, 976-983.
  • Ceschini, L., Boromei, I., Minak, G., et al., Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite, Compos. Sci. Technol., 2007, 67, 605-615.
  • Günen, A., Kanca, E., Demir, M., et al., Microstructural and mechanical properties of friction stir welded pure lead, Indian J. Eng. Mater. Sci., 2018, 25 (1), 26-32.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel, IOP Conf. Series: Materials Science and Engineering, 2019, 629, 012010.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints, Materials Research Express, 2019, 6 (4), 046537.
  • Reynolds, A.P., Tang, W., Gnaupel-Herold, T., Prask, H., Structure, properties, and residual stress of 304L stainless steel friction stir welds, Scr. Mater., 2003, 48 (9), 1289-1294.
  • Meran, C., Kovan, V., Alptekin, A., “Friction stir welding of AISI 304 austenitic stainless steel, Mat.-wiss. u. Werkstofftech., 2007, 38 (10), 829-835.
  • Çam, G., İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Applicability of friction stir welding to steels, J. Achiev. Mater. Manuf. Eng. (JAMME), 2017, 80 (2), 65-85.
  • Çam, G. and Meran, C., Çeliklerin sürtünme karıştırma kaynağı, Mühendis ve Makina, 2009, 50, (599), 24-32.
  • Forcellese, A., Mancia, T., Pieralisi, M., Vita A., Friction stir welding of additively manufactured blanks in thermoplastic polymer, Procedia CIRP, 2022, 112, 448-453.
  • Pirizadeh, M., Azdast, T., Ahmadi, S.R., et al., Friction stir welding of thermoplastics using a newly designed tool, Mater. & Des., 2014, 54, 342-347.
  • Jaiganesh, V., Maruthu, B., Gopinath, E., Optimization of process parameters on friction stir welding of high density polypropylene plate, Procedia CIRP, 2014, 97, 1957-1965.
  • İpekoğlu, G. and Çam, G., Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys, Metall. Mater. Trans. A, 2014, 45A (7), 3074-3087.
  • Çam, G., İpekoğlu, G., Tarık Serindağ, H., Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Join., 2014, 19 (8), 715-720.
  • Ouyang, J.H. and Kovacevic, R., Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, J Mater Eng Perform., 2002, 11, 51-63.
  • Zhang, C., Cao, Y., Huang, G., et al., Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding, J. Manuf. Processes, 2020, 49, 214-226.
  • Shah, L.H., Othman, N.H., Gerlich, A., Review of research progress on aluminium-magnesium dissimilar friction stir welding, Sci. Technol. Weld. Joining, 2018, 23, 256-270.
  • Kwon, Y.J., Shigematsu, I., Saito, N., Dissimilar friction stir welding between magnesium and aluminum alloys, Mater. Lett., 2008, 62, 3827-3829.
  • Firouzdor, V. and Kou, S., Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed, Metall. Mater. Trans. A, 2010, 41, 2914-2935.
  • Sameer, M.D. and Birru, A.K., Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082–T6 aluminium alloy, J. Magnesium Alloys, 2019, 7 (2), 264-271.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., Mechanical properties of friction stir welded St 37 and St 44 steel joints, Materials Testing, 2018, 60 (12), 1163-1170.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints, Mater. Research Express, 2019, 6 (4), 046537.
  • Jafarzadegan, M., Feng, A.H., Abdollah-Zadeh, A., et al., Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel, Mater. Charact., 2012, 74, 28-41.
  • Logan, B.P., Toumpis, A.I., Galloway, A.M., et al., Dissimilar friction stir welding of duplex stainless steel to low alloy structural steel, Sci. Technol. Weld. Joining, 2016, 21, 11-19.
  • He, B., Cui, L., Wang, D., et al., The metallurgical bonding and high temperature tensile behaviors of 9Cr-1W steel and 316L steel dissimilar joint by friction stir welding, J. Manuf. Processes, 2019, 44, 241-251.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri, Fen ve Müh. Dergisi, Dokuz Eylül Üniv., 2018, 20 (59), 471-480.
  • Mehta, K.P., Carlone, P., Astarita, A., et al., Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys, Mater. Sci. Eng. A, 2019, 759, 252-261.
  • Zhao, Y., Lu, Z., Yan, K., Huang, L., Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys, Mater. Des., 2015, 65, 675-681.
  • Zhao, Y., Jiang, S., Yang, S., et al., Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding, Int. J. Adv. Manuf. Technol., 2016, 83, 673-679.
  • Liu, Z., Meng, X., Ji, S., et al., Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding, J. Manuf. Processes, 2018, 31, 552-559.
  • Ji, S., Meng, X., Liu, Z., et al., Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic, Mater. Lett., 2017, 201, 173-176.
  • Lv, X., Wu, C., Yang, C., Padhy, G.K., Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy, J. Mater. Process. Technol., 2018, 254, 145-157.
  • Jiang, X.Q., Liu, Y.Y., Yuan, T., et al., Enhanced mechanical properties of dissimilar Al and Mg alloys fabricated by pulse current assisted friction stir welding, J. Manuf. Proces., 2022, 76, 123-137.
  • Patrick, M.M., Akinlabi, E., Makhatha, M.E., ‘Microstructure and electrical resistivity properties of copper and aluminium friction stir spot welds’, 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Feb. 2017, 42-47.
  • Sun, Y., Fujii, H., Zhu, S., Guan, S., Flat friction stir spot welding of three 6061-T6 aluminum sheets, J. Mater. Process. Tech., 2019, 264, 414-421.
  • De Castro, C.C., Shen, J., Plaine, A.H., et al., Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets, J. Mater. Res. Technol., 2022, 20, 857-866.
  • Boldsaikhan, E., Fukada, S., Fujimoto, M., et al., Refill friction stir spot welding of surface-treated aerospace aluminum alloys with faying-surface sealant, J. Manuf. Process., 2019, 42, 113-120.
  • Derlatka, A. and Lacki, P., Experimental study and numerical simulation of cellular I-beam manufactured using refill friction stir spot welding technology, Thin–Walled Structures, 2024, 200, 111890.
  • Gera, D., Fu, B.-L., Suhuddin, U.F.H.R., et al., Microstructure, mechanical and functional properties of refill friction stir spot welds on multilayered aluminum foils for battery application, Journal of Materials Research and Technology, 2021, 13, 2272-2286.
  • Kim, D.-J., Baek, S.-Y., Nishijima, M., et al., Toward defect-less and minimized work-hardening loss implementation of Al alloy/high-purity Cu dissimilar lap joints by refill friction stir spot welding for battery tab-to-busbar applications, Materials Science & Engineering A, 2024, 892, 146089.
  • Wynne, B.P., Threadgill, P.L., Davies, P.S., et al., Microstructure and texture in static shoulder friction stir welds, In Proceedings of the 7th International Friction Stir Welding Symposium; TWI, Awaji Island, Japan, 2008, pp. 1-8.
  • Russell, M.J. and Blignault, C., In Proceedings of the Proc 6th Int. Symp. on Friction Stir Welding; P L Threadgill, Ed., TWI, Saint Sauveur, Quebec, Canada, 2007.
  • Wu, H., Chen, Y., Strong, D., Prangnell, P., Stationary shoulder FSW for joining high strength aluminum alloys, J. Mater. Process. Tech., 2015, 221, 187-196.
  • Russell, M.J., Threadgill, P.L., Thomas, M.J., Wynne, B.P., Static Shoulder Friction Stir Welding of Ti-6Al-4V: Process and Evaluation, In Proceedings of the 11th World Conference on Titanium (Ti-2007), (JIMIC - 5); Kyoto, Japan, 2007.
  • Ahmed, M.M.Z., Wynne, B.P., Rainforth, W.M., Threadgill, P.L., Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium. Scr. Mater., 2011, 64, 45-48.
  • İpekoğlu, G. and Çam, G., Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance, IOP Conf. Series: Materials Science and Engineering, 2019, 629, 012007.
  • Çam, G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Materials Today: Proceedings, 2022, 62(1), 77-85.
  • Çam, G. and Günen, A., Challenges and opportunities in the production of magnesium parts by directed energy deposition processes, Journal of Magnesium and Alloys, 2024, 12, 1663-1686.
  • Güler, S., Serindağ, H.T., Çam, G., Tel ark eklemeli imalat: Son gelişmeler ve değerlendirmeler, TMMOB Makina Mühendisleri Odası, Kaynak Teknolojisi 12. Ulusal Kongre ve Sergisi (KAYKON 2021), 19-20 Kasım 2021, Ankara, S. 9-40.
  • Çam, G., Ventzke, V., dos Santos, J.F., et al., Characterization of laser and electron beam welded Al-alloys, Prakt. Metallogr., 1999, 36 (2), 59-89.
  • Çam, G., Koçak, M., Dobi, D., et al., Fracture behaviour of diffusion bonded bimaterial Ti-Al joints, Sci. Technol. Weld. Join., 1997, 2 (3), 95-101.
  • Çam, G., Sürtünme karıştırma kaynağındaki gelişmeler, TMMOB Makina Mühendisleri Odası, Kaynak Teknolojisi IV. Ulusal Kongre ve Sergisi, 24-26 Ekim 2003, Kocaeli, S. 47-64.
  • Çam, G., Sürtünme karıştırma kaynağı ve uygulamaları, 9. Malzeme Sempozyumu Bildiriler Kitabı, 8-10 Mayıs 2002, Pamukkale Üniversitesi, Denizli, 2002, S. 450-458.
  • Sun, G.D., Zhou, L., Liu, Y.N., et al., Microstructure characterization and evaluation of mechanical properties in 2A97 aluminum-lithium alloys welded by stationary shoulder friction stir welding, Journal of Materials Research and Technology, 2022, 16, 416-432.
  • Sen, M. and Puri, A.B., Formation of intermetallic compounds (IMCs) in FSW of aluminum and magnesium alloys (Al/Mg alloys) - A review, Materials Today Communications, 2022, 33, 105017.
  • Song, Q., Wang, H., Ji, S., et al., Improving joint quality of hybrid friction stir welded Al/Mg dissimilar alloys by RBFNN-GWO system, J. Manuf. Process., 2020, 59, 750-759.
  • Hu, W., Ma, Z., Ji, S., et al., Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN, J. Mater. Sci. Technol., 2020, 53, 41-52.
  • You, J.-Q., Zhao, Y.-Q., Dong, C.-L., Su, Y.-H., Improving the microstructure and mechanical properties of Al-Cu dissimilar joints by ultrasonic dynamic-stationary shoulder friction stir welding, Journal of Materials Processing Tech., 2023, 311, 117812.
  • Hammad, A.S., Ahmed, M.M.Z., Lu, H., et al., An investigation on mechanical and microstructural evolution of stationary shoulder friction stir welded aluminum alloy AA7075-T651, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236, 6665-6676.
  • Barbini, A., Carstensen, J., dos Santos, J.F., Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024 / AA7050 FSW joints, J. Mater. Sci. Technol., 2018, 34, 119-127.
  • Li, D., Yang, X., Cui, L., et al., Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651, J. Mater. Process. Tech., 2015, 222, 391-398.
  • Sun, T., Roy, M.J., Strong, D., et al., Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld, J. Mater. Process. Tech., 2019, 263, 256-265.
  • Sun, Z., Yang, X., Li, D., Cui, L., The local strength and toughness for stationary shoulder friction stir weld on AA6061-T6 alloy, Mater. Charact., 2016, 111, 114-121.
  • Ji, S.D., Meng, X.C., Liu, J.G., et al., Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy, Mater. Des., 2014, 62, 113-117.
  • Threadgill, P.L., Ahmed, M.M.Z., Martin, J.P., et al., The use of bobbin tools for friction stir welding of aluminium alloys, Mater. Sci. Forum, 2010, 642, 1179-1184.
  • Wang, F.F., Li, W.Y., Shen, J., et al., Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy, Mater. Des., 2015, 86, 933-940.
  • Wang, G.Q., Zhao, Y.H., Tang, Y.Y., Research progress of bobbin tool friction stir welding of aluminum alloys: A review, Acta Metall. Sin. (English Lett.), 2020, 33 (1), 13-29.
  • Xu, W.F., Luo, Y.X., Fu, M.W., Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy, Mater. Charact., 2018, 138, 48-55.
  • Xu, W.F., Luo, Y.X., Zhang, W., Fu, M.W., Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, J. Mater. Sci. Technol., 2018, 34, 173-184.
  • Yang, C., Ni, D.R., Xue, P., et al., A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates, Mater. Charact., 2018, 145, 20-28.
  • Lohwasser, D., Friction stir welding of aerospace alloys, In Proceedings of the Proc. 4th Int. Symp. on ‘Friction stir welding; TWI, Park City, UT, USA, 2003; Vol. 48, pp. 37-46.
  • Ahmed, M.M.Z., Habba, M.I.A., El-Sayed Seleman, M.M., et al., Bobbin tool friction stir welding of aluminum thick lap joints’ properties, Materials, 2021, 14 (16), 4584.
  • Li, G.-H., Gao, S.-K., Luo, S.-F., et al., Tailoring macrostructure and texture in bobbin-tool friction stir weld via manipulation of deformation behaviour of plasticised metal during welding enabled by modifying tool profile, International Journal of Machine Tools & Manufacture, 2024, 201, 104198.
  • Russell, M.J., Nunn, M.E., Martin, J., Recent developments in the stationary shoulder FSW of titanium alloys. In: Proceedings of Seventh Int. Symp. on Friction Stir Welding. 2008, TWI, Japan.
  • Goebel, J., Reimann, M., Norman, A., dos Santos, J.F., Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851, J. Mater. Process. Technol., 2017, 245, 37-45.
  • Scupin, P., Semi-stationary shoulder bobbin tool (S3BT): A new approach in high speed friction stir welding, Ph.D. Thesis, Helmholtz-Zentrum Geesthacht, Germany, 2015.
  • Li, G.-H., Chen, T., Fu, B.-L., et al., Semi-stationary shoulder bobbin-tool: A new approach in tailoring macrostructure and mechanical properties of bobbin-tool friction stir welds in magnesium alloy, Journal of Materials Processing Tech., 2023, 317, 117984.

The Current Progress in the Application of Friction Stir Welding in Transportation Industries

Yıl 2024, Cilt: 2 Sayı: 2, 166 - 177, 27.09.2024

Öz

The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the transport industries has pushed forward several developments in different related aspects of these strategic industries. Due to the geometric limitations involved in the conventional FSW process, many variants have been required in recent years to suit the different types of geometries and structures. As a result, numerous variants such as refill friction stir spot welding (RF-SSW), stationary shoulder friction stir welding (SS-FSW), and bobbin tool friction stir welding (BT-FSW) have been developed. These developments have led to a wider application of FSW technology in various transport industries, such as automobile, shipbuilding, high-speed trains, and aerospace industries.

Etik Beyan

No ethical permission is required

Destekleyen Kurum

No financial support

Kaynakça

  • Thomas, W.M., et al., International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8 and US Patent Application No. 5,460,317, Dec.1991.
  • Ahmed, M.M.Z., El-Sayed Seleman, M.M., Fydrych, D., Çam G., A review on friction stir welding of dissimilar Al- and Mg-alloys: Scientometric analysis and strategies for achieving high-quality joints, Journal of Magnesium and Alloys, 2023, 11, 4082-4127.
  • Ahmed, M.M.Z., El-Sayed Seleman, M.M., Fydrych, D., Çam G., Friction stir welding in the aerospace industry: The current progress and state-of-the-art review, Materials, 2023, Vol. 16, Article Number: 2971.
  • Çam, G., Javaheri, V, Heidarzadeh, A., Advances in FSW and FSSW of dissimilar Al-alloy plates, J. Adhes. Sci. Technol., 2023, 37 (2), 162-194.
  • Khaliq, U.A., Yusof, F., Chen, Z., Mohd Isa, M.S., Çam, G., A comprehensive review on friction stir welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement, J. Mater. Res. Technol., 2023, 27, 4595-4624.
  • Kashaev, N., Ventzke, V., Çam, G., Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications, J. Manuf. Proces., 2018, 36, 571-600
  • Çam, G. and İpekoğlu, G., Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 2017, 91 (5-8), 1851-1866.
  • Çam, G., Friction stir welded structural materials: Beyond Al-alloys, Int. Mater. Rev., 2011, 56 (1), 1-48.
  • Mishra, R.S. and Ma, Z.Y., Friction stir welding and processing, Mater. Sci. Eng. R, 2005, 50, 1-78.
  • Threadgill, P.L., Leonard, A.J., Shercliff, H.R., Withers, P.J., Friction stir welding of aluminium alloys, Int. Mater. Rev., 2009, 54, 49-93.
  • Nandan, R., Debroy, T., Bhadeshia, H.K.D.H., Recent advances in friction-stir welding – Process, weldment structure and properties. Prog. Mater. Sci., 2008, 53, 980-1023.
  • Thomas, W.M., Johnson, K.I., Wiesner, C.S., Friction stir welding - Recent developments in tool and process technologies, Adv. Eng. Mater., 2003, 5, 485-490.
  • Mishra, R.S. and Mahoney, M.W., Eds., ‘Friction Stir Welding and Processing’, ASM International, Materials Park, Ohio, USA, 2007.
  • Singh, K., Singh, G., Singh, H., Review on friction stir welding of magnesium alloys, J. Magnes. Alloy., 2018, 6 (4), 399-416.
  • Padhy, G.K., Wu, C.S., Gao, S., Friction stir based welding and processing technologies – process, parameters, microstructures and applications – A review, J. Mater. Sci. Technol., 2018, 34 (1), 1-38.
  • Wahid, M.A., Khan, Z.A., Siddiquee, A.N., Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties, Transactions of Nonferrous Metal Society of China, 2018, 28 (2), 193-219.
  • Mironov, S., Sato, Y.S., Kokowa, H., Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review, J. Mater. Sci. Technol., 2018, 34 (1), 58-72.
  • Gangwar, K. and Ramulu, M., Friction-stir welding of titanium alloys: A review, Materials & Design, 2018, 141 (5), 230-255.
  • Venkatesh, K.M., Arivarsu, M., Manikandan, M., Arivazhagan, N., Review on friction stir welding of steels, Materials Today: Proceedings, 2018, 5 (5), 13227-13235.
  • Liu, F.C., Hovanski, Y., Miles, M.P., et al., A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 2018, 34, 39-57.
  • Yang, X.W., Fu ,T., Li, W.Y., Friction stir spot welding: A review on joint macro- and microstructure, property, and process modelling, Adv. Mater. Sci. Eng., 2014, 1, 1-11.
  • İpekoglu, G. and Çam, G., Farklı Al-alaşımı levhaların (AA6061/AA7075) sürtünme karıştırma kaynağına temper durumunun etkisi’, Mühendis ve Makina, 2012, 53 (629), 40-47.
  • İpekoglu, G., Akçam, Ö., and Çam, G., Farklı kalınlıktaki AA6061-T6 levhaların sürtünme karıştırma kaynağı için uygun kaynak parametrelerinin belirlenmesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2018, 18 (1), 324-335.
  • Çam, G., Sürtünme karıştırma kaynağı (SKK) – Al-alaşımları için geliştirilmiş yeni bir kaynak teknolojisi, Mühendis ve Makina, 2005, 46 (541), 30-39.
  • Yavuz, H. and Çam, G., Yeni bir kaynak teknolojisi: Sürtünme karıştırma kaynağı, Endüstri ve Otomasyon, 2001, 51, 18-20.
  • Çam, G., Al-alaşımları için geliştirilen yeni kaynak yöntemleri, Kaynak Teknolojisi III. Ulusal Kongresi ve Sergisi, 19-20 October 2001, İstanbul, 2001, 267-277.
  • Thomas, W.M. and Nicholas, E.D., Friction stir welding for the transportation industries, Mater. Des., 1997, 18 (4-6), 269-273.
  • Dawes, C.J. and Thomas, W.M., Friction stir process welds aluminum alloys, Weld. J., 1996, 75, 41-45.
  • Kallee, S.W., Davenport, J., Nicholas, E.D., Railway manufacturers implement friction stir welding, Weld. J., 2002, 81, 47-50.
  • Johnsen, M.R., Friction stir welding takes off at Boeing, Weld. J., 1999, 78, 35-39.
  • Ding, J., Carter, R., Lawless, K., et al., Friction stir welding flies high at NASA, Weld. J., 2006, 85, 54-59.
  • Kawasaki Heavy Industries, Ltd., ‘A new method for light alloy joining - Friction spot joining, 2006-2014. www.kawasakirobot.com.
  • Von Strombeck, A., Çam, G., dos Santos, J.F., et al., ‘A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys’, Proc. of the TMS 2001 (Louisiana, USA, February 12-14, 2001), eds: S.K. Das, J.G. Kaufman, and T.J. Lienert, pub.: TMS, Warrendale, PA, 2001, pp. 249-264.
  • İpekoğlu, G., Erim, S., Gören Kıral, B., Çam, G., Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates, Kovove Mater., 2013, 51 (3), 155-163.
  • İpekoğlu, G., Gören Kıral, B., Erim, S., Çam, G., Investigation of the effect of temper condition friction stir weldability of AA7075 Al-alloy plates, Mater. Tehnol., 2012, 46 (6), 627-632.
  • Çam, G., Güçlüer, S., Çakan, A., Serindağ, H.T., Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Mat.-wiss. u. Werkstofftech., 2009, 40 (8), 638-642.
  • İpekoğlu, G., Akçam, Ö., Çam, G., AA6061-T6 Al-alaşımı levhaların sürtünme karıştırma kaynağında levha kalınlığının kaynak hızına etkisi, Kaynak Teknolojisi X. Ulusal Kongre ve Sergisi (KAYKON 2017), 17-18 Kasım 2017, Ankara, 63-75.
  • Lee, W.B., Yeon, Y.M., Jung, S.B., Joint properties of friction stir welded AZ31B-H24 magnesium alloy, Mater. Sci. Technol., 2003, 19 (6), 785-790.
  • Afrin, N., Chen, D.L., Cao, X., Jahazi, M., Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy, Mater. Sci. Eng. A, 2008, 472 (1-2), 179-186.
  • Xie, G.M., Ma, Z.Y., Geng, L., Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy, Mater. Sci. Eng. A, 2008, 486 (1-2), 49-55.
  • Çam, G., Serindağ, H.T., Çakan, A., et al., The effect of weld parameters on friction stir welding of brass plates, Mat.-wiss. u. Werkstofftech., 2008, 39 (6), 394-399.
  • Çam, G., Mistikoglu, S., Pakdil, M., Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu-37%Zn brass plate, Weld. J., 2009, 88 (11), 225-232.
  • Küçükömeroğlu, T., Şentürk, E., Kara, L., et al., Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 2016, 25 (1), 320-326.
  • Avettand-Fenoel, M.-N. and Simar, A., A review about friction stir welding of metal matrix composites, Mater. Charact., 2016, 120, 1-17. [ Nami, H., Adgi, H., Sharifitabar, M., Shamabadi, H., Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des., 2011, 32, 976-983.
  • Ceschini, L., Boromei, I., Minak, G., et al., Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2O3p composite, Compos. Sci. Technol., 2007, 67, 605-615.
  • Günen, A., Kanca, E., Demir, M., et al., Microstructural and mechanical properties of friction stir welded pure lead, Indian J. Eng. Mater. Sci., 2018, 25 (1), 26-32.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel, IOP Conf. Series: Materials Science and Engineering, 2019, 629, 012010.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints, Materials Research Express, 2019, 6 (4), 046537.
  • Reynolds, A.P., Tang, W., Gnaupel-Herold, T., Prask, H., Structure, properties, and residual stress of 304L stainless steel friction stir welds, Scr. Mater., 2003, 48 (9), 1289-1294.
  • Meran, C., Kovan, V., Alptekin, A., “Friction stir welding of AISI 304 austenitic stainless steel, Mat.-wiss. u. Werkstofftech., 2007, 38 (10), 829-835.
  • Çam, G., İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., Applicability of friction stir welding to steels, J. Achiev. Mater. Manuf. Eng. (JAMME), 2017, 80 (2), 65-85.
  • Çam, G. and Meran, C., Çeliklerin sürtünme karıştırma kaynağı, Mühendis ve Makina, 2009, 50, (599), 24-32.
  • Forcellese, A., Mancia, T., Pieralisi, M., Vita A., Friction stir welding of additively manufactured blanks in thermoplastic polymer, Procedia CIRP, 2022, 112, 448-453.
  • Pirizadeh, M., Azdast, T., Ahmadi, S.R., et al., Friction stir welding of thermoplastics using a newly designed tool, Mater. & Des., 2014, 54, 342-347.
  • Jaiganesh, V., Maruthu, B., Gopinath, E., Optimization of process parameters on friction stir welding of high density polypropylene plate, Procedia CIRP, 2014, 97, 1957-1965.
  • İpekoğlu, G. and Çam, G., Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys, Metall. Mater. Trans. A, 2014, 45A (7), 3074-3087.
  • Çam, G., İpekoğlu, G., Tarık Serindağ, H., Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Join., 2014, 19 (8), 715-720.
  • Ouyang, J.H. and Kovacevic, R., Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, J Mater Eng Perform., 2002, 11, 51-63.
  • Zhang, C., Cao, Y., Huang, G., et al., Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding, J. Manuf. Processes, 2020, 49, 214-226.
  • Shah, L.H., Othman, N.H., Gerlich, A., Review of research progress on aluminium-magnesium dissimilar friction stir welding, Sci. Technol. Weld. Joining, 2018, 23, 256-270.
  • Kwon, Y.J., Shigematsu, I., Saito, N., Dissimilar friction stir welding between magnesium and aluminum alloys, Mater. Lett., 2008, 62, 3827-3829.
  • Firouzdor, V. and Kou, S., Al-to-Mg friction stir welding: effect of material position, travel speed, and rotation speed, Metall. Mater. Trans. A, 2010, 41, 2914-2935.
  • Sameer, M.D. and Birru, A.K., Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082–T6 aluminium alloy, J. Magnesium Alloys, 2019, 7 (2), 264-271.
  • Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., Mechanical properties of friction stir welded St 37 and St 44 steel joints, Materials Testing, 2018, 60 (12), 1163-1170.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints, Mater. Research Express, 2019, 6 (4), 046537.
  • Jafarzadegan, M., Feng, A.H., Abdollah-Zadeh, A., et al., Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel, Mater. Charact., 2012, 74, 28-41.
  • Logan, B.P., Toumpis, A.I., Galloway, A.M., et al., Dissimilar friction stir welding of duplex stainless steel to low alloy structural steel, Sci. Technol. Weld. Joining, 2016, 21, 11-19.
  • He, B., Cui, L., Wang, D., et al., The metallurgical bonding and high temperature tensile behaviors of 9Cr-1W steel and 316L steel dissimilar joint by friction stir welding, J. Manuf. Processes, 2019, 44, 241-251.
  • İpekoğlu, G., Küçükömeroğlu, T., Aktarer, S.M., et al., Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri, Fen ve Müh. Dergisi, Dokuz Eylül Üniv., 2018, 20 (59), 471-480.
  • Mehta, K.P., Carlone, P., Astarita, A., et al., Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys, Mater. Sci. Eng. A, 2019, 759, 252-261.
  • Zhao, Y., Lu, Z., Yan, K., Huang, L., Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys, Mater. Des., 2015, 65, 675-681.
  • Zhao, Y., Jiang, S., Yang, S., et al., Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding, Int. J. Adv. Manuf. Technol., 2016, 83, 673-679.
  • Liu, Z., Meng, X., Ji, S., et al., Improving tensile properties of Al/Mg joint by smashing intermetallic compounds via ultrasonic-assisted stationary shoulder friction stir welding, J. Manuf. Processes, 2018, 31, 552-559.
  • Ji, S., Meng, X., Liu, Z., et al., Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic, Mater. Lett., 2017, 201, 173-176.
  • Lv, X., Wu, C., Yang, C., Padhy, G.K., Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy, J. Mater. Process. Technol., 2018, 254, 145-157.
  • Jiang, X.Q., Liu, Y.Y., Yuan, T., et al., Enhanced mechanical properties of dissimilar Al and Mg alloys fabricated by pulse current assisted friction stir welding, J. Manuf. Proces., 2022, 76, 123-137.
  • Patrick, M.M., Akinlabi, E., Makhatha, M.E., ‘Microstructure and electrical resistivity properties of copper and aluminium friction stir spot welds’, 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Feb. 2017, 42-47.
  • Sun, Y., Fujii, H., Zhu, S., Guan, S., Flat friction stir spot welding of three 6061-T6 aluminum sheets, J. Mater. Process. Tech., 2019, 264, 414-421.
  • De Castro, C.C., Shen, J., Plaine, A.H., et al., Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets, J. Mater. Res. Technol., 2022, 20, 857-866.
  • Boldsaikhan, E., Fukada, S., Fujimoto, M., et al., Refill friction stir spot welding of surface-treated aerospace aluminum alloys with faying-surface sealant, J. Manuf. Process., 2019, 42, 113-120.
  • Derlatka, A. and Lacki, P., Experimental study and numerical simulation of cellular I-beam manufactured using refill friction stir spot welding technology, Thin–Walled Structures, 2024, 200, 111890.
  • Gera, D., Fu, B.-L., Suhuddin, U.F.H.R., et al., Microstructure, mechanical and functional properties of refill friction stir spot welds on multilayered aluminum foils for battery application, Journal of Materials Research and Technology, 2021, 13, 2272-2286.
  • Kim, D.-J., Baek, S.-Y., Nishijima, M., et al., Toward defect-less and minimized work-hardening loss implementation of Al alloy/high-purity Cu dissimilar lap joints by refill friction stir spot welding for battery tab-to-busbar applications, Materials Science & Engineering A, 2024, 892, 146089.
  • Wynne, B.P., Threadgill, P.L., Davies, P.S., et al., Microstructure and texture in static shoulder friction stir welds, In Proceedings of the 7th International Friction Stir Welding Symposium; TWI, Awaji Island, Japan, 2008, pp. 1-8.
  • Russell, M.J. and Blignault, C., In Proceedings of the Proc 6th Int. Symp. on Friction Stir Welding; P L Threadgill, Ed., TWI, Saint Sauveur, Quebec, Canada, 2007.
  • Wu, H., Chen, Y., Strong, D., Prangnell, P., Stationary shoulder FSW for joining high strength aluminum alloys, J. Mater. Process. Tech., 2015, 221, 187-196.
  • Russell, M.J., Threadgill, P.L., Thomas, M.J., Wynne, B.P., Static Shoulder Friction Stir Welding of Ti-6Al-4V: Process and Evaluation, In Proceedings of the 11th World Conference on Titanium (Ti-2007), (JIMIC - 5); Kyoto, Japan, 2007.
  • Ahmed, M.M.Z., Wynne, B.P., Rainforth, W.M., Threadgill, P.L., Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium. Scr. Mater., 2011, 64, 45-48.
  • İpekoğlu, G. and Çam, G., Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance, IOP Conf. Series: Materials Science and Engineering, 2019, 629, 012007.
  • Çam, G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Materials Today: Proceedings, 2022, 62(1), 77-85.
  • Çam, G. and Günen, A., Challenges and opportunities in the production of magnesium parts by directed energy deposition processes, Journal of Magnesium and Alloys, 2024, 12, 1663-1686.
  • Güler, S., Serindağ, H.T., Çam, G., Tel ark eklemeli imalat: Son gelişmeler ve değerlendirmeler, TMMOB Makina Mühendisleri Odası, Kaynak Teknolojisi 12. Ulusal Kongre ve Sergisi (KAYKON 2021), 19-20 Kasım 2021, Ankara, S. 9-40.
  • Çam, G., Ventzke, V., dos Santos, J.F., et al., Characterization of laser and electron beam welded Al-alloys, Prakt. Metallogr., 1999, 36 (2), 59-89.
  • Çam, G., Koçak, M., Dobi, D., et al., Fracture behaviour of diffusion bonded bimaterial Ti-Al joints, Sci. Technol. Weld. Join., 1997, 2 (3), 95-101.
  • Çam, G., Sürtünme karıştırma kaynağındaki gelişmeler, TMMOB Makina Mühendisleri Odası, Kaynak Teknolojisi IV. Ulusal Kongre ve Sergisi, 24-26 Ekim 2003, Kocaeli, S. 47-64.
  • Çam, G., Sürtünme karıştırma kaynağı ve uygulamaları, 9. Malzeme Sempozyumu Bildiriler Kitabı, 8-10 Mayıs 2002, Pamukkale Üniversitesi, Denizli, 2002, S. 450-458.
  • Sun, G.D., Zhou, L., Liu, Y.N., et al., Microstructure characterization and evaluation of mechanical properties in 2A97 aluminum-lithium alloys welded by stationary shoulder friction stir welding, Journal of Materials Research and Technology, 2022, 16, 416-432.
  • Sen, M. and Puri, A.B., Formation of intermetallic compounds (IMCs) in FSW of aluminum and magnesium alloys (Al/Mg alloys) - A review, Materials Today Communications, 2022, 33, 105017.
  • Song, Q., Wang, H., Ji, S., et al., Improving joint quality of hybrid friction stir welded Al/Mg dissimilar alloys by RBFNN-GWO system, J. Manuf. Process., 2020, 59, 750-759.
  • Hu, W., Ma, Z., Ji, S., et al., Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN, J. Mater. Sci. Technol., 2020, 53, 41-52.
  • You, J.-Q., Zhao, Y.-Q., Dong, C.-L., Su, Y.-H., Improving the microstructure and mechanical properties of Al-Cu dissimilar joints by ultrasonic dynamic-stationary shoulder friction stir welding, Journal of Materials Processing Tech., 2023, 311, 117812.
  • Hammad, A.S., Ahmed, M.M.Z., Lu, H., et al., An investigation on mechanical and microstructural evolution of stationary shoulder friction stir welded aluminum alloy AA7075-T651, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236, 6665-6676.
  • Barbini, A., Carstensen, J., dos Santos, J.F., Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024 / AA7050 FSW joints, J. Mater. Sci. Technol., 2018, 34, 119-127.
  • Li, D., Yang, X., Cui, L., et al., Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651, J. Mater. Process. Tech., 2015, 222, 391-398.
  • Sun, T., Roy, M.J., Strong, D., et al., Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld, J. Mater. Process. Tech., 2019, 263, 256-265.
  • Sun, Z., Yang, X., Li, D., Cui, L., The local strength and toughness for stationary shoulder friction stir weld on AA6061-T6 alloy, Mater. Charact., 2016, 111, 114-121.
  • Ji, S.D., Meng, X.C., Liu, J.G., et al., Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy, Mater. Des., 2014, 62, 113-117.
  • Threadgill, P.L., Ahmed, M.M.Z., Martin, J.P., et al., The use of bobbin tools for friction stir welding of aluminium alloys, Mater. Sci. Forum, 2010, 642, 1179-1184.
  • Wang, F.F., Li, W.Y., Shen, J., et al., Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy, Mater. Des., 2015, 86, 933-940.
  • Wang, G.Q., Zhao, Y.H., Tang, Y.Y., Research progress of bobbin tool friction stir welding of aluminum alloys: A review, Acta Metall. Sin. (English Lett.), 2020, 33 (1), 13-29.
  • Xu, W.F., Luo, Y.X., Fu, M.W., Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy, Mater. Charact., 2018, 138, 48-55.
  • Xu, W.F., Luo, Y.X., Zhang, W., Fu, M.W., Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, J. Mater. Sci. Technol., 2018, 34, 173-184.
  • Yang, C., Ni, D.R., Xue, P., et al., A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates, Mater. Charact., 2018, 145, 20-28.
  • Lohwasser, D., Friction stir welding of aerospace alloys, In Proceedings of the Proc. 4th Int. Symp. on ‘Friction stir welding; TWI, Park City, UT, USA, 2003; Vol. 48, pp. 37-46.
  • Ahmed, M.M.Z., Habba, M.I.A., El-Sayed Seleman, M.M., et al., Bobbin tool friction stir welding of aluminum thick lap joints’ properties, Materials, 2021, 14 (16), 4584.
  • Li, G.-H., Gao, S.-K., Luo, S.-F., et al., Tailoring macrostructure and texture in bobbin-tool friction stir weld via manipulation of deformation behaviour of plasticised metal during welding enabled by modifying tool profile, International Journal of Machine Tools & Manufacture, 2024, 201, 104198.
  • Russell, M.J., Nunn, M.E., Martin, J., Recent developments in the stationary shoulder FSW of titanium alloys. In: Proceedings of Seventh Int. Symp. on Friction Stir Welding. 2008, TWI, Japan.
  • Goebel, J., Reimann, M., Norman, A., dos Santos, J.F., Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851, J. Mater. Process. Technol., 2017, 245, 37-45.
  • Scupin, P., Semi-stationary shoulder bobbin tool (S3BT): A new approach in high speed friction stir welding, Ph.D. Thesis, Helmholtz-Zentrum Geesthacht, Germany, 2015.
  • Li, G.-H., Chen, T., Fu, B.-L., et al., Semi-stationary shoulder bobbin-tool: A new approach in tailoring macrostructure and mechanical properties of bobbin-tool friction stir welds in magnesium alloy, Journal of Materials Processing Tech., 2023, 317, 117984.
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer), Malzeme Mühendisliği (Diğer)
Bölüm Reviews
Yazarlar

Gürel Çam 0000-0003-0222-9274

Yayımlanma Tarihi 27 Eylül 2024
Gönderilme Tarihi 8 Kasım 2023
Kabul Tarihi 23 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

IEEE G. Çam, “The Current Progress in the Application of Friction Stir Welding in Transportation Industries”, IJONFEST, c. 2, sy. 2, ss. 166–177, 2024.