Konferans Bildirisi
BibTex RIS Kaynak Göster

Atık ısı geri kazanımında termofotovoltaik teknolojisinin gelişimi: Son beş yıla dair bir inceleme

Yıl 2025, Cilt: 3 Sayı: 1, 59 - 69, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030106

Öz

Günümüzde karbon emisyonlarının azaltılması, küresel sürdürülebilirlik hedefleri doğrultusunda karşılaşılan en büyük zorluklardan biri olarak öne çıkmaktadır. Bu hedefin önemli bir kısmı, sanayide fosil yakıtların yakılmasından kaynaklanan emisyonların azaltılmasına odaklanmaktadır. Sanayi sektöründe gerçekleştirilen üretim süreçleri, ciddi miktarda karbon emisyonuna yol açarken, üretilen ısının büyük bir kısmı verimli bir şekilde kullanılamamaktadır. Bu bağlamda, yüksek sıcaklıkta faaliyet gösteren endüstrilerde oluşan atık ısının geri kazanımında termofotovoltaik (TPV) sistemler etkili bir çözüm olarak dikkat çekmektedir. Bu çalışmada, yüksek verimli TPV sistemlerinin son beş yıldaki gelişmeleri ve endüstriyel atık ısı uygulamaları kapsamlı bir şekilde incelenmiştir. Özellikle seçici yayıcılar ve fotovoltaik hücreler sistem düzeyinde analiz edilmiş, enerji dönüşüm verimliliğini artırmaya yönelik kritik bileşenler ve ilgili mikro/nano üretim teknikleri ele alınmıştır. Uygulama perspektifinde, TPV teknolojilerinin yüksek sıcaklık endüstrilerindeki uygulanabilirliği, dünya genelindeki atık ısı kullanım durumuyla ilişkilendirilmiş ve demir çelik endüstrisi örneği üzerinden TPV sistemlerinin atık ısı geri kazanımı ile karbon nötrlüğüne katkıları irdelenmiştir.

Kaynakça

  • [1] E. Dogan, T. Luni, M.T. Majeed, P. Tzeremes, The nexus between global carbon and renewable energy sources: A step towards sustainability, J. Clean. Prod. 416 (2023) 137927. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137927.
  • [2] M. Saghafifar, A. Omar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization, Energy Convers. Manag. 198 (2019) 110905. https://doi.org/https://doi.org/10.1016/j.enconman.2018.10.047.
  • [3] B.K. Das, M. Hasan, Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat, Energy. 214 (2021) 119036. https://doi.org/https://doi.org/10.1016/j.energy.2020.119036.
  • [4] Z. Utlu, A. Hepbasli, A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method, Renew. Sustain. Energy Rev. 11 (2007) 1438–1459. https://doi.org/https://doi.org/10.1016/j.rser.2005.11.006.
  • [5] M.M.A. Gamel, H.J. Lee, W.E.S.W.A. Rashid, P.J. Ker, L.K. Yau, M.A. Hannan, M.Z. Jamaludin, A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations, Materials (Basel). 14 (2021). https://doi.org/10.3390/ma14174944.
  • [6] A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall, D.J. Friedman, E.J. Tervo, R.M. France, M.R. Young, A. Rohskopf, S. Verma, E.N. Wang, A. Henry, Thermophotovoltaic efficiency of 40%, Nature. 604 (2022) 287–291. https://doi.org/10.1038/s41586-022-04473-y.
  • [7] T. Bauer, I. Forbes, R. Penlington, N. Pearsall, The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry, AIP Conf. Proc. 653 (2003) 101–110. https://doi.org/10.1063/1.1539368.
  • [8] H. Wang, Z. Xu, C. Wang, Z. Hou, M. Bian, N. Zhuang, H. Tao, Y. Wang, X. Tang, Optimized design and application performance analysis of heat recovery hybrid system for radioisotope thermophotovoltaic based on thermoelectric heat dissipation, Appl. Energy. 355 (2024) 122259. https://doi.org/https://doi.org/10.1016/j.apenergy.2023.122259.
  • [9] Z. Utlu, U. Parali, Investigation of the potential of thermophotovoltaic heat recovery for the Turkish industrial sector, Energy Convers. Manag. 74 (2013) 308–322. https://doi.org/https://doi.org/10.1016/j.enconman.2013.05.030.
  • [10] Z. Utlu, B.S. Önal, Thermodynamic analysis of thermophotovoltaic systems used in waste heat recovery systems: an application, Int. J. Low-Carbon Technol. 13 (2018) 52–60. https://doi.org/10.1093/ijlct/ctx019.
  • [11] Q. Lu, X. Zhou, A. Krysa, A. Marshall, P. Carrington, C.-H. Tan, A. Krier, InAs thermophotovoltaic cells with high quantum efficiency for waste heat recovery applications below 1000°C, Sol. Energy Mater. Sol. Cells. 179 (2018) 334–338. https://doi.org/https://doi.org/10.1016/j.solmat.2017.12.031.
  • [12] D. Jiang, W. Yang, K.J. Chua, J. Ouyang, Thermal performance of micro-combustors with baffles for thermophotovoltaic system, Appl. Therm. Eng. 61 (2013) 670–677. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2013.08.044.
  • [13] T. Liao, J. Lin, C. Tao, B. Lin, Exploiting the waste heat in graphene-based thermionic energy converter by means of thermophotovoltaic cell, Renew. Energy. 162 (2020) 1715–1722. https://doi.org/https://doi.org/10.1016/j.renene.2020.09.103.
  • [14] B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, S. Fan, Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery, Nano Lett. 18 (2018) 5224–5230. https://doi.org/10.1021/acs.nanolett.8b02184.
  • [15] J. van der Heide, N.E. Posthuma, G. Flamand, W. Geens, J. Poortmans, Cost-efficient thermophotovoltaic cells based on germanium substrates, Sol. Energy Mater. Sol. Cells. 93 (2009) 1810–1816. https://doi.org/https://doi.org/10.1016/j.solmat.2009.06.017.
  • [16] J.M. Gee, J.B. Moreno, S.-Y. Lin, J.G. Fleming, Selective emitters using photonic crystals for thermophotovoltaic energy conversion, in: Conf. Rec. Twenty-Ninth IEEE Photovolt. Spec. Conf. 2002., 2002: pp. 896–899. https://doi.org/10.1109/PVSC.2002.1190724.
  • [17] B. Davenport, S. Michael, Advanced thermophotovoltaic cells modeling, optimized for use in radioisotope thermoelectric generators (RTGs) for Mars and deep space missions, in: 22nd AIAA Int. Commun. Satell. Syst. Conf. \& Exhib. 2004, 2004: p. 3271.
  • [18] C.M. Waits, Thermophotovoltaic energy conversion for personal power sources, Army Res. Lab. (2012).
  • [19] A.G. Olabi, K. Elsaid, E.T. Sayed, M.S. Mahmoud, T. Wilberforce, R.J. Hassiba, M.A. Abdelkareem, Application of nanofluids for enhanced waste heat recovery: A review, Nano Energy. 84 (2021) 105871. https://doi.org/https://doi.org/10.1016/j.nanoen.2021.105871.
  • [20] Y. Ammar, S. Joyce, R. Norman, Y. Wang, A.P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK, Appl. Energy. 89 (2012) 3–20. https://doi.org/https://doi.org/10.1016/j.apenergy.2011.06.003.
  • [21] C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential, Renew. Sustain. Energy Rev. 57 (2016) 1568–1579. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.192.
  • [22] S. Brueckner, R. Arbter, M. Pehnt, E. Laevemann, Industrial waste heat potential in Germany—a bottom-up analysis, Energy Effic. 10 (2017) 513–525. https://doi.org/10.1007/s12053-016-9463-6.
  • [23] L. Fu, Y. Li, Y. Wu, X. Wang, Y. Jiang, Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source, Energy. 230 (2021) 120765. https://doi.org/https://doi.org/10.1016/j.energy.2021.120765.
  • [24] G. Ma, J. Cai, W. Zeng, H. Dong, Analytical Research on Waste Heat Recovery and Utilization of China’s Iron & Steel Industry, Energy Procedia. 14 (2012) 1022–1028. https://doi.org/https://doi.org/10.1016/j.egypro.2011.12.1049.
  • [25] B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, S. Fan, High-performance near-field thermophotovoltaics for waste heat recovery, Nano Energy. 41 (2017) 344–350. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.09.054.
  • [26] K. He, L. Wang, A review of energy use and energy-efficient technologies for the iron and steel industry, Renew. Sustain. Energy Rev. 70 (2017) 1022–1039. https://doi.org/10.1016/J.RSER.2016.12.007.
  • [27] E. Mousa, C. Wang, J. Riesbeck, M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, Renew. Sustain. Energy Rev. 65 (2016) 1247–1266. https://doi.org/https://doi.org/10.1016/j.rser.2016.07.061.
  • [28] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, Y.-M. Chiang, C.T.M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C.B. Field, B. Hannegan, B.-M. Hodge, M.I. Hoffert, E. Ingersoll, P. Jaramillo, K.S. Lackner, K.J. Mach, M. Mastrandrea, J. Ogden, P.F. Peterson, D.L. Sanchez, D. Sperling, J. Stagner, J.E. Trancik, C.-J. Yang, K. Caldeira, Net-zero emissions energy systems, Science (80-. ). 360 (2018) eaas9793. https://doi.org/10.1126/science.aas9793.
  • [29] I.E. Agency, Energy demand for iron and steel by fuel in the Net Zero Scenario, 2010-2030, (2022). https://www.iea.org/data-and-statistics/charts/energy-demand-for-iron-and-steel-by-fuel-in-the-net-zero-scenario-2010-2030.
  • [30] Z. Liu, D. Guan, W. Wei, S.J. Davis, P. Ciais, J. Bai, S. Peng, Q. Zhang, K. Hubacek, G. Marland, R.J. Andres, D. Crawford-Brown, J. Lin, H. Zhao, C. Hong, T.A. Boden, K. Feng, G.P. Peters, F. Xi, J. Liu, Y. Li, Y. Zhao, N. Zeng, K. He, Reduced carbon emission estimates from fossil fuel combustion and cement production in China, Nature. 524 (2015) 335–338. https://doi.org/10.1038/nature14677.
  • [31] S.G. Sahu, N. Chakraborty, P. Sarkar, Coal–biomass co-combustion: An overview, Renew. Sustain. Energy Rev. 39 (2014) 575–586. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.106.
  • [32] M. Flores-Granobles, M. Saeys, Minimizing CO2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry, Energy Environ. Sci. 13 (2020) 1923–1932. https://doi.org/10.1039/D0EE00787K.
  • [33] R.Q. Wang, L. Jiang, Y.D. Wang, A.P. Roskilly, Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review, J. Clean. Prod. 274 (2020) 122997. https://doi.org/10.1016/J.JCLEPRO.2020.122997.
  • [34] H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, Q. Liao, A review of waste heat recovery technologies towards molten slag in steel industry, Appl. Energy. 112 (2013) 956–966. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.02.019.
  • [35] Q. Song, M.-Z. Guo, L. Wang, T.-C. Ling, Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment, Resour. Conserv. Recycl. 173 (2021) 105740. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105740.
  • [36] Z. Fan, S.J. Friedmann, Low-carbon production of iron and steel: Technology options, economic assessment, and policy, Joule. 5 (2021) 829–862. https://doi.org/https://doi.org/10.1016/j.joule.2021.02.018.
  • [37] Worldsteel association, Total production of crude steel, (2023). https://worldsteel.org/data/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND.
  • [38] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/https://doi.org/10.1016/j.tsep.2018.04.017.
  • [39] A. Licht, N. Pfiester, D. DeMeo, J. Chivers, T.E. Vandervelde, A Review of Advances in Thermophotovoltaics for Power Generation and Waste Heat Harvesting, MRS Adv. 4 (2019) 2271–2282. https://doi.org/10.1557/adv.2019.342.
  • [40] D.N. Woolf, E.A. Kadlec, D. Bethke, A.D. Grine, J.J. Nogan, J.G. Cederberg, D.B. Burckel, T.S. Luk, E.A. Shaner, J.M. Hensley, High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter, Optica. 5 (2018) 213–218. https://doi.org/10.1364/OPTICA.5.000213.
  • [41] A. Kiani, H. Fayaz Movahed, S. Hoogland, O. Voznyy, R. Wolowiec, L. Levina, F.P. Garcia de Arquer, P. Pietsch, X. Wang, P. Maraghechi, E.H. Sargent, Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat, ACS Energy Lett. 1 (2016) 740–746. https://doi.org/10.1021/acsenergylett.6b00314.
  • [42] E. Shoaei, Performance assessment of thermophotovoltaic application in steel industry, Sol. Energy Mater. Sol. Cells. 157 (2016) 55–64. https://doi.org/https://doi.org/10.1016/j.solmat.2016.05.012.
  • [43] L.M. Fraas, Economic potential for thermophotovoltaic electric power generation in the steel industry, in: 2014 IEEE 40th Photovolt. Spec. Conf., 2014: pp. 766–770. https://doi.org/10.1109/PVSC.2014.6925031.
  • [44] Z. Utlu, U. Paralı, Ç. Gültekin, Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors, Energy Technol. 6 (2018) 1039–1051. https://doi.org/https://doi.org/10.1002/ente.201700607.
  • [45] L. Onwuemezie, H. Gohari Darabkhani, Thermophotovoltaics (TPVs), solar and wind assisted hydrogen production and utilisation in iron and steel industry for low carbon productions, J. Clean. Prod. 443 (2024) 140893. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.140893.
  • [46] H. Ma, N. Du, Z. Zhang, F. Lyu, N. Deng, C. Li, S. Yu, Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry, Renew. Sustain. Energy Rev. 79 (2017) 50–60. https://doi.org/https://doi.org/10.1016/j.rser.2017.04.122.
  • [47] M. Ren, P. Lu, X. Liu, M.S. Hossain, Y. Fang, T. Hanaoka, B. O’Gallachoir, J. Glynn, H. Dai, Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality, Appl. Energy. 298 (2021) 117209. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117209.
  • [48] H. Lu, L. Price, Q. Zhang, Capturing the invisible resource: Analysis of waste heat potential in Chinese industry, Appl. Energy. 161 (2016) 497–511. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.10.060.
  • [49] Y. Xuan, Q. Yue, Forecast of steel demand and the availability of depreciated steel scrap in China, Resour. Conserv. Recycl. 109 (2016) 1–12. https://doi.org/https://doi.org/10.1016/j.resconrec.2016.02.003.

Development of thermophotovoltaic technology in waste heat recovery: A Review of the last five years

Yıl 2025, Cilt: 3 Sayı: 1, 59 - 69, 28.03.2025
https://doi.org/10.61150/ijonfest.2025030106

Öz

Reducing carbon emissions has emerged as one of the most significant challenges in achieving global sustainability goals. A substantial portion of this objective focuses on mitigating emissions resulting from the combustion of fossil fuels in industrial processes. While production activities in the industrial sector contribute significantly to carbon emissions, a large fraction of the heat generated remains underutilized. In this context, thermophotovoltaic (TPV) systems present an effective solution for waste heat recovery in high-temperature industries. This study provides a comprehensive review of advancements in high-efficiency TPV systems and their applications in industrial waste heat recovery over the past five years. Specifically, selective emitters and photovoltaic cells have been analyzed at the system level, with critical components and relevant micro/nano fabrication techniques examined to enhance energy conversion efficiency. From an application perspective, the feasibility of TPV technologies in high-temperature industries is investigated in relation to global waste heat utilization trends, with the steel industry serving as a case study to illustrate the potential of TPV systems in waste heat recovery and contributions to carbon neutrality.

Kaynakça

  • [1] E. Dogan, T. Luni, M.T. Majeed, P. Tzeremes, The nexus between global carbon and renewable energy sources: A step towards sustainability, J. Clean. Prod. 416 (2023) 137927. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137927.
  • [2] M. Saghafifar, A. Omar, K. Mohammadi, A. Alashkar, M. Gadalla, A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization, Energy Convers. Manag. 198 (2019) 110905. https://doi.org/https://doi.org/10.1016/j.enconman.2018.10.047.
  • [3] B.K. Das, M. Hasan, Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat, Energy. 214 (2021) 119036. https://doi.org/https://doi.org/10.1016/j.energy.2020.119036.
  • [4] Z. Utlu, A. Hepbasli, A review and assessment of the energy utilization efficiency in the Turkish industrial sector using energy and exergy analysis method, Renew. Sustain. Energy Rev. 11 (2007) 1438–1459. https://doi.org/https://doi.org/10.1016/j.rser.2005.11.006.
  • [5] M.M.A. Gamel, H.J. Lee, W.E.S.W.A. Rashid, P.J. Ker, L.K. Yau, M.A. Hannan, M.Z. Jamaludin, A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations, Materials (Basel). 14 (2021). https://doi.org/10.3390/ma14174944.
  • [6] A. LaPotin, K.L. Schulte, M.A. Steiner, K. Buznitsky, C.C. Kelsall, D.J. Friedman, E.J. Tervo, R.M. France, M.R. Young, A. Rohskopf, S. Verma, E.N. Wang, A. Henry, Thermophotovoltaic efficiency of 40%, Nature. 604 (2022) 287–291. https://doi.org/10.1038/s41586-022-04473-y.
  • [7] T. Bauer, I. Forbes, R. Penlington, N. Pearsall, The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry, AIP Conf. Proc. 653 (2003) 101–110. https://doi.org/10.1063/1.1539368.
  • [8] H. Wang, Z. Xu, C. Wang, Z. Hou, M. Bian, N. Zhuang, H. Tao, Y. Wang, X. Tang, Optimized design and application performance analysis of heat recovery hybrid system for radioisotope thermophotovoltaic based on thermoelectric heat dissipation, Appl. Energy. 355 (2024) 122259. https://doi.org/https://doi.org/10.1016/j.apenergy.2023.122259.
  • [9] Z. Utlu, U. Parali, Investigation of the potential of thermophotovoltaic heat recovery for the Turkish industrial sector, Energy Convers. Manag. 74 (2013) 308–322. https://doi.org/https://doi.org/10.1016/j.enconman.2013.05.030.
  • [10] Z. Utlu, B.S. Önal, Thermodynamic analysis of thermophotovoltaic systems used in waste heat recovery systems: an application, Int. J. Low-Carbon Technol. 13 (2018) 52–60. https://doi.org/10.1093/ijlct/ctx019.
  • [11] Q. Lu, X. Zhou, A. Krysa, A. Marshall, P. Carrington, C.-H. Tan, A. Krier, InAs thermophotovoltaic cells with high quantum efficiency for waste heat recovery applications below 1000°C, Sol. Energy Mater. Sol. Cells. 179 (2018) 334–338. https://doi.org/https://doi.org/10.1016/j.solmat.2017.12.031.
  • [12] D. Jiang, W. Yang, K.J. Chua, J. Ouyang, Thermal performance of micro-combustors with baffles for thermophotovoltaic system, Appl. Therm. Eng. 61 (2013) 670–677. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2013.08.044.
  • [13] T. Liao, J. Lin, C. Tao, B. Lin, Exploiting the waste heat in graphene-based thermionic energy converter by means of thermophotovoltaic cell, Renew. Energy. 162 (2020) 1715–1722. https://doi.org/https://doi.org/10.1016/j.renene.2020.09.103.
  • [14] B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, S. Fan, Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery, Nano Lett. 18 (2018) 5224–5230. https://doi.org/10.1021/acs.nanolett.8b02184.
  • [15] J. van der Heide, N.E. Posthuma, G. Flamand, W. Geens, J. Poortmans, Cost-efficient thermophotovoltaic cells based on germanium substrates, Sol. Energy Mater. Sol. Cells. 93 (2009) 1810–1816. https://doi.org/https://doi.org/10.1016/j.solmat.2009.06.017.
  • [16] J.M. Gee, J.B. Moreno, S.-Y. Lin, J.G. Fleming, Selective emitters using photonic crystals for thermophotovoltaic energy conversion, in: Conf. Rec. Twenty-Ninth IEEE Photovolt. Spec. Conf. 2002., 2002: pp. 896–899. https://doi.org/10.1109/PVSC.2002.1190724.
  • [17] B. Davenport, S. Michael, Advanced thermophotovoltaic cells modeling, optimized for use in radioisotope thermoelectric generators (RTGs) for Mars and deep space missions, in: 22nd AIAA Int. Commun. Satell. Syst. Conf. \& Exhib. 2004, 2004: p. 3271.
  • [18] C.M. Waits, Thermophotovoltaic energy conversion for personal power sources, Army Res. Lab. (2012).
  • [19] A.G. Olabi, K. Elsaid, E.T. Sayed, M.S. Mahmoud, T. Wilberforce, R.J. Hassiba, M.A. Abdelkareem, Application of nanofluids for enhanced waste heat recovery: A review, Nano Energy. 84 (2021) 105871. https://doi.org/https://doi.org/10.1016/j.nanoen.2021.105871.
  • [20] Y. Ammar, S. Joyce, R. Norman, Y. Wang, A.P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK, Appl. Energy. 89 (2012) 3–20. https://doi.org/https://doi.org/10.1016/j.apenergy.2011.06.003.
  • [21] C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Estimating the global waste heat potential, Renew. Sustain. Energy Rev. 57 (2016) 1568–1579. https://doi.org/https://doi.org/10.1016/j.rser.2015.12.192.
  • [22] S. Brueckner, R. Arbter, M. Pehnt, E. Laevemann, Industrial waste heat potential in Germany—a bottom-up analysis, Energy Effic. 10 (2017) 513–525. https://doi.org/10.1007/s12053-016-9463-6.
  • [23] L. Fu, Y. Li, Y. Wu, X. Wang, Y. Jiang, Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source, Energy. 230 (2021) 120765. https://doi.org/https://doi.org/10.1016/j.energy.2021.120765.
  • [24] G. Ma, J. Cai, W. Zeng, H. Dong, Analytical Research on Waste Heat Recovery and Utilization of China’s Iron & Steel Industry, Energy Procedia. 14 (2012) 1022–1028. https://doi.org/https://doi.org/10.1016/j.egypro.2011.12.1049.
  • [25] B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, S. Fan, High-performance near-field thermophotovoltaics for waste heat recovery, Nano Energy. 41 (2017) 344–350. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.09.054.
  • [26] K. He, L. Wang, A review of energy use and energy-efficient technologies for the iron and steel industry, Renew. Sustain. Energy Rev. 70 (2017) 1022–1039. https://doi.org/10.1016/J.RSER.2016.12.007.
  • [27] E. Mousa, C. Wang, J. Riesbeck, M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, Renew. Sustain. Energy Rev. 65 (2016) 1247–1266. https://doi.org/https://doi.org/10.1016/j.rser.2016.07.061.
  • [28] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, Y.-M. Chiang, C.T.M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C.B. Field, B. Hannegan, B.-M. Hodge, M.I. Hoffert, E. Ingersoll, P. Jaramillo, K.S. Lackner, K.J. Mach, M. Mastrandrea, J. Ogden, P.F. Peterson, D.L. Sanchez, D. Sperling, J. Stagner, J.E. Trancik, C.-J. Yang, K. Caldeira, Net-zero emissions energy systems, Science (80-. ). 360 (2018) eaas9793. https://doi.org/10.1126/science.aas9793.
  • [29] I.E. Agency, Energy demand for iron and steel by fuel in the Net Zero Scenario, 2010-2030, (2022). https://www.iea.org/data-and-statistics/charts/energy-demand-for-iron-and-steel-by-fuel-in-the-net-zero-scenario-2010-2030.
  • [30] Z. Liu, D. Guan, W. Wei, S.J. Davis, P. Ciais, J. Bai, S. Peng, Q. Zhang, K. Hubacek, G. Marland, R.J. Andres, D. Crawford-Brown, J. Lin, H. Zhao, C. Hong, T.A. Boden, K. Feng, G.P. Peters, F. Xi, J. Liu, Y. Li, Y. Zhao, N. Zeng, K. He, Reduced carbon emission estimates from fossil fuel combustion and cement production in China, Nature. 524 (2015) 335–338. https://doi.org/10.1038/nature14677.
  • [31] S.G. Sahu, N. Chakraborty, P. Sarkar, Coal–biomass co-combustion: An overview, Renew. Sustain. Energy Rev. 39 (2014) 575–586. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.106.
  • [32] M. Flores-Granobles, M. Saeys, Minimizing CO2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry, Energy Environ. Sci. 13 (2020) 1923–1932. https://doi.org/10.1039/D0EE00787K.
  • [33] R.Q. Wang, L. Jiang, Y.D. Wang, A.P. Roskilly, Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review, J. Clean. Prod. 274 (2020) 122997. https://doi.org/10.1016/J.JCLEPRO.2020.122997.
  • [34] H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen, Q. Liao, A review of waste heat recovery technologies towards molten slag in steel industry, Appl. Energy. 112 (2013) 956–966. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.02.019.
  • [35] Q. Song, M.-Z. Guo, L. Wang, T.-C. Ling, Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment, Resour. Conserv. Recycl. 173 (2021) 105740. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105740.
  • [36] Z. Fan, S.J. Friedmann, Low-carbon production of iron and steel: Technology options, economic assessment, and policy, Joule. 5 (2021) 829–862. https://doi.org/https://doi.org/10.1016/j.joule.2021.02.018.
  • [37] Worldsteel association, Total production of crude steel, (2023). https://worldsteel.org/data/annual-production-steel-data/?ind=P1_crude_steel_total_pub/CHN/IND.
  • [38] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289. https://doi.org/https://doi.org/10.1016/j.tsep.2018.04.017.
  • [39] A. Licht, N. Pfiester, D. DeMeo, J. Chivers, T.E. Vandervelde, A Review of Advances in Thermophotovoltaics for Power Generation and Waste Heat Harvesting, MRS Adv. 4 (2019) 2271–2282. https://doi.org/10.1557/adv.2019.342.
  • [40] D.N. Woolf, E.A. Kadlec, D. Bethke, A.D. Grine, J.J. Nogan, J.G. Cederberg, D.B. Burckel, T.S. Luk, E.A. Shaner, J.M. Hensley, High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter, Optica. 5 (2018) 213–218. https://doi.org/10.1364/OPTICA.5.000213.
  • [41] A. Kiani, H. Fayaz Movahed, S. Hoogland, O. Voznyy, R. Wolowiec, L. Levina, F.P. Garcia de Arquer, P. Pietsch, X. Wang, P. Maraghechi, E.H. Sargent, Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat, ACS Energy Lett. 1 (2016) 740–746. https://doi.org/10.1021/acsenergylett.6b00314.
  • [42] E. Shoaei, Performance assessment of thermophotovoltaic application in steel industry, Sol. Energy Mater. Sol. Cells. 157 (2016) 55–64. https://doi.org/https://doi.org/10.1016/j.solmat.2016.05.012.
  • [43] L.M. Fraas, Economic potential for thermophotovoltaic electric power generation in the steel industry, in: 2014 IEEE 40th Photovolt. Spec. Conf., 2014: pp. 766–770. https://doi.org/10.1109/PVSC.2014.6925031.
  • [44] Z. Utlu, U. Paralı, Ç. Gültekin, Applicability of Thermophotovoltaic Technologies in the Iron and Steel Sectors, Energy Technol. 6 (2018) 1039–1051. https://doi.org/https://doi.org/10.1002/ente.201700607.
  • [45] L. Onwuemezie, H. Gohari Darabkhani, Thermophotovoltaics (TPVs), solar and wind assisted hydrogen production and utilisation in iron and steel industry for low carbon productions, J. Clean. Prod. 443 (2024) 140893. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.140893.
  • [46] H. Ma, N. Du, Z. Zhang, F. Lyu, N. Deng, C. Li, S. Yu, Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry, Renew. Sustain. Energy Rev. 79 (2017) 50–60. https://doi.org/https://doi.org/10.1016/j.rser.2017.04.122.
  • [47] M. Ren, P. Lu, X. Liu, M.S. Hossain, Y. Fang, T. Hanaoka, B. O’Gallachoir, J. Glynn, H. Dai, Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality, Appl. Energy. 298 (2021) 117209. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117209.
  • [48] H. Lu, L. Price, Q. Zhang, Capturing the invisible resource: Analysis of waste heat potential in Chinese industry, Appl. Energy. 161 (2016) 497–511. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.10.060.
  • [49] Y. Xuan, Q. Yue, Forecast of steel demand and the availability of depreciated steel scrap in China, Resour. Conserv. Recycl. 109 (2016) 1–12. https://doi.org/https://doi.org/10.1016/j.resconrec.2016.02.003.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akışkan Mekaniği ve Termal Mühendislik (Diğer), Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Reviews
Yazarlar

Emrehan Gürsoy 0000-0003-2373-3357

Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 3 Şubat 2025
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE E. Gürsoy, “Development of thermophotovoltaic technology in waste heat recovery: A Review of the last five years”, IJONFEST, c. 3, sy. 1, ss. 59–69, 2025, doi: 10.61150/ijonfest.2025030106.