Research Article
BibTex RIS Cite

A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory

Year 2022, Volume: 25 Issue: 2, 64 - 75, 01.06.2022
https://doi.org/10.5541/ijot.1017374

Abstract

Single-phase turbulent pipe flows are analysed utilizing a new theory presented in a parallel paper. Arguably this new theory implies improvements in matching modelling results with experimental observations: To illustrate, unique for these computations is that a 1st law balance agreement between simulations and corresponding experiments is achieved, while resolving the time-averaged fluid flow velocity (including the various inner turbulent zones) and accounting for the wall surface roughness. Testing this new approach, the computations of 20 cases of turbulent pipe flow arrives at a remarkably high amount of kinetic energy dissipation occurring at near-wall positions, where some 54-83% of the net kinetic energy dissipation occurs within the viscous sublayer-, and 17-39% within the buffer layer. Although turbulence incorporates time-varying phenomena, e.g. swirls, large eddies, and breakup of the latter, it is argued that simulating these would have practically no effect on the net kinetic energy dissipation – and the associated wall shear stress – for the present pipe flow cases. Another illustration of the improvements relate to transition computations: While a proposed nominal transition model arrives at fair values of transition Reynolds numbers, some improvements on this transition analysis can be made, e.g. allowing for the modelling of the turbulence onset/offset hysteresis behaviour. For scientists who wish to model time-varying phenomena, e.g. for the study of mixing, boundary layer thickness, or wall-pressure fluctuations, there should be possibilities to implement this new theory in computational flow solvers.

References

  • R.L. Panton, Incompressible Flow, John Wiley & Sons, New York, USA, 1984. H. Tennekes, J.L. Lumley, A First Course in Turbulence, MIT Press, 1972.
  • C. Liu, P. Lu, L. Chen, Y. Yan, "New Theories on Boundary Layer Transition and Turbulence Formation", Modelling and Simulation in Engineering, Article ID 619419, 2012.
  • W.K. George, “Recent Advancements Toward the Understanding of Turbulent Boundary Layers”, American Institute of Aeronautics and Astronautics Paper AIAA-2005-4669.
  • F.M. White, Fluid Mechanics, 2nd Ed., McGraw-Hill Book Company, 1986.
  • M. Gustavsson, “A Residual Thermodynamic Analysis of Turbulence – Part 1: Theory”, submitted for publication.
  • H.W. Emmons, ”The laminar-turbulent transition in a boundary layer – Part I”, J. Aero. Sci. 18, 490–498, 1951.
  • H.W. Emmons, A.E. Bryson, ”The laminar-turbulent transition in a boundary layer (Part II)”, Proc. 1st US Natl. Cong. Appl. Mech., 859–868, 1952.
  • S.H. Davis, J.L. Lumley (eds.), Frontiers in Fluid Mechanics: A Collection of Research Papers Written in Commemoration of the 65th Birthday of Stanley Corrsin, Springer Verlag, 1985.
  • P. Jonáš, “On the Turbulent Spot and Calmed Region”, Engineering Mechanics 2007, National Conference with International Participation, Svratka, Czech Republic, May 14-17, 2007.
  • K. Sreenivasan, P.A. Davidson, Y. Kaneda, K. Moffatt, A Voyage Through Turbulence, Cambridge University Press, 2011.
  • M. Gustavsson, ‘‘Residual Thermodynamics: A Framework for Analysis of Non-Linear Irreversible Processes’’, Int. J. Thermodynamics, 15, 69–82, 2012.
  • K. Narahari Rao, R. Narasimha, M.A. Badri Narayanan, “The ‘Bursting’ Phenomenon in A Turbulent Boundary Layer”, J. Fluid Mech. 48, 339-352, 1971.
  • D. Ross, J.M. Robertson, “Shear Stress in a Turbulent Bounday Layer”, J. Appl. Phys. 21, 557-561, 1950.
  • F. Schultz-Grunow, “Über das Nachwirken der Turbulenz bei Örtlich und Zeitlich Verzögerter Grenzschichtströmung”, Proc. 5th Int. Cong. Appl. Mech., Cambridge, Massachusetts, 428-435, 1938.
  • W. Jacobs, Zeit. f. angew. Math. u. Mech. 19, 1939. Translated in NACA Tech. Memo 951 (1940).
  • D. Lathrop, ”Turbulence Lost in Transience”, Nature 443, 36–37, 2006.
  • B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, “Finite Lifetime of Turbulence in Shear Flows”, Nature 443, 59–62, 2006.
  • D. Vergano, "Turbulence theory gets a bit choppy", USA Today, September 10, 2006.
  • W. Wang, C. Pan, J. Wang, “Wall-Normal Variation of Spanwise Streak Spacing in Turbulent Boundary Layer With Low-to-Moderate Reynolds Number”, Entropy 21, p. 24-, 2019
  • J. K. Abrantes, “Holographic Particle Image Velocimetry for Wall Turbulence Measurements”, Ph.D. thesis, Ecole Centrale de Lille, 2012.
Year 2022, Volume: 25 Issue: 2, 64 - 75, 01.06.2022
https://doi.org/10.5541/ijot.1017374

Abstract

References

  • R.L. Panton, Incompressible Flow, John Wiley & Sons, New York, USA, 1984. H. Tennekes, J.L. Lumley, A First Course in Turbulence, MIT Press, 1972.
  • C. Liu, P. Lu, L. Chen, Y. Yan, "New Theories on Boundary Layer Transition and Turbulence Formation", Modelling and Simulation in Engineering, Article ID 619419, 2012.
  • W.K. George, “Recent Advancements Toward the Understanding of Turbulent Boundary Layers”, American Institute of Aeronautics and Astronautics Paper AIAA-2005-4669.
  • F.M. White, Fluid Mechanics, 2nd Ed., McGraw-Hill Book Company, 1986.
  • M. Gustavsson, “A Residual Thermodynamic Analysis of Turbulence – Part 1: Theory”, submitted for publication.
  • H.W. Emmons, ”The laminar-turbulent transition in a boundary layer – Part I”, J. Aero. Sci. 18, 490–498, 1951.
  • H.W. Emmons, A.E. Bryson, ”The laminar-turbulent transition in a boundary layer (Part II)”, Proc. 1st US Natl. Cong. Appl. Mech., 859–868, 1952.
  • S.H. Davis, J.L. Lumley (eds.), Frontiers in Fluid Mechanics: A Collection of Research Papers Written in Commemoration of the 65th Birthday of Stanley Corrsin, Springer Verlag, 1985.
  • P. Jonáš, “On the Turbulent Spot and Calmed Region”, Engineering Mechanics 2007, National Conference with International Participation, Svratka, Czech Republic, May 14-17, 2007.
  • K. Sreenivasan, P.A. Davidson, Y. Kaneda, K. Moffatt, A Voyage Through Turbulence, Cambridge University Press, 2011.
  • M. Gustavsson, ‘‘Residual Thermodynamics: A Framework for Analysis of Non-Linear Irreversible Processes’’, Int. J. Thermodynamics, 15, 69–82, 2012.
  • K. Narahari Rao, R. Narasimha, M.A. Badri Narayanan, “The ‘Bursting’ Phenomenon in A Turbulent Boundary Layer”, J. Fluid Mech. 48, 339-352, 1971.
  • D. Ross, J.M. Robertson, “Shear Stress in a Turbulent Bounday Layer”, J. Appl. Phys. 21, 557-561, 1950.
  • F. Schultz-Grunow, “Über das Nachwirken der Turbulenz bei Örtlich und Zeitlich Verzögerter Grenzschichtströmung”, Proc. 5th Int. Cong. Appl. Mech., Cambridge, Massachusetts, 428-435, 1938.
  • W. Jacobs, Zeit. f. angew. Math. u. Mech. 19, 1939. Translated in NACA Tech. Memo 951 (1940).
  • D. Lathrop, ”Turbulence Lost in Transience”, Nature 443, 36–37, 2006.
  • B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, “Finite Lifetime of Turbulence in Shear Flows”, Nature 443, 59–62, 2006.
  • D. Vergano, "Turbulence theory gets a bit choppy", USA Today, September 10, 2006.
  • W. Wang, C. Pan, J. Wang, “Wall-Normal Variation of Spanwise Streak Spacing in Turbulent Boundary Layer With Low-to-Moderate Reynolds Number”, Entropy 21, p. 24-, 2019
  • J. K. Abrantes, “Holographic Particle Image Velocimetry for Wall Turbulence Measurements”, Ph.D. thesis, Ecole Centrale de Lille, 2012.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mattias Gustavsson

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Gustavsson, M. (2022). A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory. International Journal of Thermodynamics, 25(2), 64-75. https://doi.org/10.5541/ijot.1017374
AMA Gustavsson M. A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory. International Journal of Thermodynamics. June 2022;25(2):64-75. doi:10.5541/ijot.1017374
Chicago Gustavsson, Mattias. “A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory”. International Journal of Thermodynamics 25, no. 2 (June 2022): 64-75. https://doi.org/10.5541/ijot.1017374.
EndNote Gustavsson M (June 1, 2022) A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory. International Journal of Thermodynamics 25 2 64–75.
IEEE M. Gustavsson, “A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory”, International Journal of Thermodynamics, vol. 25, no. 2, pp. 64–75, 2022, doi: 10.5541/ijot.1017374.
ISNAD Gustavsson, Mattias. “A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory”. International Journal of Thermodynamics 25/2 (June 2022), 64-75. https://doi.org/10.5541/ijot.1017374.
JAMA Gustavsson M. A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory. International Journal of Thermodynamics. 2022;25:64–75.
MLA Gustavsson, Mattias. “A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory”. International Journal of Thermodynamics, vol. 25, no. 2, 2022, pp. 64-75, doi:10.5541/ijot.1017374.
Vancouver Gustavsson M. A Residual Thermodynamic Analysis of Turbulence – Part 2: Pipe Flow Computations and Further Development of Theory. International Journal of Thermodynamics. 2022;25(2):64-75.