Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 73 - 81, 24.02.2021
https://doi.org/10.38058/ijsl.867859

Öz

Destekleyen Kurum

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

16L0430001

Kaynakça

  • Aellen, P. 1967. Salsola In: P.H. Davis [ed.], Flora of Turkey and the East Aegean Islands, Vol. 2, 328-335. Edingburg University Press, Edinburgh.
  • Ashraf, M., Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants, Plant Science, 166: 3-16.
  • Ashraf, M., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206-216.
  • Avcı, M. 2005. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi 13: 27-55.
  • Avcıoğlu, R., Demiroğlu, G., Khalvati, M. A., Geren, H. 2003. Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri II. Prolin, Klorofil Birikimi ve Zar Dayanıklılığı. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 40 (2): 9-16.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil., 39: 205-207.
  • Bian, Y.M., Chen, S.Y., Liu, S.K., Xie, M.Y. 1988. Effects of hf on proline of some plants, Pant Physiol. Commun., 6, 19-21.
  • Boscaiu, M., Bautista, I., Lidón, A., Llinares, J., Lull, C., Donat, P., Mayoral, O., Vicente, O. 2013. Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant., 35: 2193-2204.
  • Brooks, R.R. 1987. Serpentine and its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR.
  • Choudhary, N.L., Sairam, R.K., Tyagi, A. 2005. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Ind. J. Biochem. Biophys. 42, 366–370.
  • De Freitas P.A.F., De Carvalho H.H., Costa J.H., De Souza M.R., Da Cruz Saraiva K.D., De Oliveira F.D.B., Gomes Coelho D., Tarquinio Prisco J., Gomes-Filho E. 2019. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep., 38: 403–416.
  • Food and Agriculture Organization. 1990. Management of gypsiferow soils. FAO Soils Bulletin 62. Rome, Italy.
  • Flowers, T.J., Hall, J.L. 1978. Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23: 310-321.
  • Forlani, G., Bertazzini, M., Cagnano, G. 2019. Stress‐driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biol J., 21: 336-342.
  • Gordon, A., Lipman, C.B. 1926. Why are serpentine and other magnesian soils infertile? Soil Science 22: 291-302.
  • Grigore, M.N., Boscaiu, M., Vicente, O. 2011. Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech, 5: 12-19.
  • Guma, I. R., Padrón-Mederos, M. A., Santos-Guerra, A., Reyes-Betancort, J. A. 2010. Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of Arid Environments 74: 708-711.
  • Güner, A., Ozhatay, N., Ekim, T., Baser, H.C. 2000. Flora of Turkey and East Aegean Islands, Vol. 11, (Supplement 2) Edinburgh: Edinburgh University Press.
  • Hare, P.D., Cress, W.A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul., 21: 79-102.
  • HongBo S., Zongsuo, L., Mıngan, S. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits, Biointerfaces, 47: 132-139.
  • Hunt, L., Amsbury, S., Baillie, A.L., Movahedi, M., Mitchell, A., Afsharinafar, M., Swarup, K., Denyer, T., Hobbs, J., Swarup, R. 2017. Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiology 42: 715–729.
  • Iba, K. 2002. Acclimative Response To Temparature Stress İn Higher Plants: Approaches Of Gene Engineering For Temparature Tolerance, Annu. Rev. Plant Biol, 53: 225-245.
  • Kalefetoğlu, T., Ekmekçi, Y. 2005. The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18 (4): 723-740.
  • Llinares, J.V., Bautista, I., Donat, M.DP., Lidón, A., Lull, C., Mayoral, O., Wankhade, S., Boscaiu, M., Vicente, O. 2015. Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Notulae Sci Biol., 7 (1): 37-44.
  • Matysik, J., Bhalu, B.A., Mohanty P. 2002. Molecular Mechanism of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci., 82, 525–532.
  • Molinari H.B.C, Marur C.J, Daros E., De Campos M.K.F., De Carvalho J.F.R.P., Filho J.C.B., Pereira L.F.P., Vieira L.G.E. 2007. Evaluation of the stress-inducible production of proline intransgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229.
  • Munns, R., 2005, Genes and salt tolerance: bringing them together, New Phytol., 167: 645-663.
  • Proctor, J., Woodell, S.R.J. 1975. The ecology of serpentine soils. Advances in Ecological Research 9: 255–366.
  • Pueyo, Y., Alados, C.L., Barrantes, O., Komac, B., Rietkerk, M. 2008. Differences in Gypsum Plant Communities Associated with Habitat Fragmentation and Livestock Grazing. Ecological Applications. 18(4): 954-964.
  • Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K. 2011. Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1): 89-98.
  • Saed-Moucheshi, A., Heidari, B., Zarei, M., Emam, Y., Pessarakli, M. 2013. Changes in antioxidant enzymes activity and physiological traits of wheat cultivars in response to arbuscular mycorrhizal symbiosis in different water regimes. Iran Agricultural Research, 31 (2): 35–50.
  • Saradhi, P., Alia, P., Arora, S., Prasad, K.V. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun., 209: 1-5.
  • Sharma, V., Ramawat, K.G. 2014. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert, Biologia, 69 (2): 178-185.
  • Taban, S., Güneş, A., Alpaslan, M., Özcan, H. 1999. Değişik Mısır (Zea mays L. cvs ) Çeşitlerinin Tuz Stresine Duyarlılıkları. Tr. J. Of Agriculture and Forestry, 23 (3): 625-633.
  • Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5th Edition, Sinauer Associates Inc., Sunderland, 782 p.
  • Tipirdamaz, R., Gagneul, D., Duhaze, C., Ainouche, A., Monnier, C., Ozkum, D., Larher, F. 2006. Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57: 139-153.
  • Trovato, M., Forlani, G., Signorelli, S. and Dietmar Funck, D. 2019. Proline Metabolism and Its Functions in Development and Stress Tolerance. Osmoprotectant-Mediated Abiotic Stress Tolerance. In: Hossain M.A. et al. (ed.), Chapter 2, Springer Nature Switzerland, Switzerland, ISBN 978-3-030-27423-8, 41-72.
  • Verbruggen, N., Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids, 35: 753-759.
  • Vlamis, J., Jenny, H. 1948. Calcium deficiency in serpentine soils as revealed by absorbent technique. Science 107: 549-51.
  • Walker, R.B. 1954. The ecology of serpentine soils: A symposium. II. Factors affecting plant growth on serpentine soils. Ecology 35: 259-66.
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56 (417): 1975-1981.
  • Yaprak, A.E. 2012. Chenopodiaceae. In: Güner, A., Aslan, S., Ekim, T., Vural, M. ve Babaç, M.T. (edr.) Türkiye Bitkileri Listesi (Damarlı Bitkiler) Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını. İstanbul.
  • Yıldırımlı, Ş. 2010. Some new taxa, records and taxonomic treatments from Turkey, Ot Sistematik Botanik Dergisi 17 (2): 64-68.

Proline accumulation in three closely related Salsola L. taxa

Yıl 2021, , 73 - 81, 24.02.2021
https://doi.org/10.38058/ijsl.867859

Öz

Halophytes, gypsicoles and serpentinicoles are adapted to specialized edaphic conditions at arid and semi-arid regions. These arid and semi-arid areas possess physical and chemical stress factors for all plants. For these plants, one of the most important parameter that provides stress tolerance is the proline accumulation. Proline is a water-soluble amino acid generally accumulated under stress and behave like an indicator for adaptation of plants against extreme conditions. In this study, the amounts of proline accumulation in three different taxa, Salsola boissieri subsp. serpentinicola, Salsola boissieri subsp. boissieri and Salsola turcica, were determined. These taxa are phylogenetically close to each other but adapted to different soil types. The highest proline accumulation measured in leaves of S. turcica with the value of 2.510 ± 0.020 µmol g-1 FW and the lowest accumulation measured in leaves of S. boissieri subsp. serpentinicola with the value of 0.996 ± 0.024 µmol g-1 FW. As a result of these proline accumulations, it can be concluded that the high amount of proline accumulation in halophytic S. turcica is a response against stress conditions but the low proline accumulation of S. boissieri subsp. serpentinicola means this species may have other adaptations against the stress factors that caused by serpentinicolous soils. Both of the studied taxa accumulate proline and the findings show that proline accumulation can be a marker in the assessment of stress tolerance of Salsola species.

Proje Numarası

16L0430001

Kaynakça

  • Aellen, P. 1967. Salsola In: P.H. Davis [ed.], Flora of Turkey and the East Aegean Islands, Vol. 2, 328-335. Edingburg University Press, Edinburgh.
  • Ashraf, M., Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants, Plant Science, 166: 3-16.
  • Ashraf, M., Foolad, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206-216.
  • Avcı, M. 2005. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi 13: 27-55.
  • Avcıoğlu, R., Demiroğlu, G., Khalvati, M. A., Geren, H. 2003. Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri II. Prolin, Klorofil Birikimi ve Zar Dayanıklılığı. Ege Üniversitesi, Ziraat Fakültesi Dergisi, 40 (2): 9-16.
  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil., 39: 205-207.
  • Bian, Y.M., Chen, S.Y., Liu, S.K., Xie, M.Y. 1988. Effects of hf on proline of some plants, Pant Physiol. Commun., 6, 19-21.
  • Boscaiu, M., Bautista, I., Lidón, A., Llinares, J., Lull, C., Donat, P., Mayoral, O., Vicente, O. 2013. Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant., 35: 2193-2204.
  • Brooks, R.R. 1987. Serpentine and its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR.
  • Choudhary, N.L., Sairam, R.K., Tyagi, A. 2005. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Ind. J. Biochem. Biophys. 42, 366–370.
  • De Freitas P.A.F., De Carvalho H.H., Costa J.H., De Souza M.R., Da Cruz Saraiva K.D., De Oliveira F.D.B., Gomes Coelho D., Tarquinio Prisco J., Gomes-Filho E. 2019. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep., 38: 403–416.
  • Food and Agriculture Organization. 1990. Management of gypsiferow soils. FAO Soils Bulletin 62. Rome, Italy.
  • Flowers, T.J., Hall, J.L. 1978. Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23: 310-321.
  • Forlani, G., Bertazzini, M., Cagnano, G. 2019. Stress‐driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biol J., 21: 336-342.
  • Gordon, A., Lipman, C.B. 1926. Why are serpentine and other magnesian soils infertile? Soil Science 22: 291-302.
  • Grigore, M.N., Boscaiu, M., Vicente, O. 2011. Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech, 5: 12-19.
  • Guma, I. R., Padrón-Mederos, M. A., Santos-Guerra, A., Reyes-Betancort, J. A. 2010. Effect of temperature and salinity on germination of Salsola vermiculata L. (Chenopodiaceae) from Canary Islands. Journal of Arid Environments 74: 708-711.
  • Güner, A., Ozhatay, N., Ekim, T., Baser, H.C. 2000. Flora of Turkey and East Aegean Islands, Vol. 11, (Supplement 2) Edinburgh: Edinburgh University Press.
  • Hare, P.D., Cress, W.A. 1997. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul., 21: 79-102.
  • HongBo S., Zongsuo, L., Mıngan, S. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits, Biointerfaces, 47: 132-139.
  • Hunt, L., Amsbury, S., Baillie, A.L., Movahedi, M., Mitchell, A., Afsharinafar, M., Swarup, K., Denyer, T., Hobbs, J., Swarup, R. 2017. Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiology 42: 715–729.
  • Iba, K. 2002. Acclimative Response To Temparature Stress İn Higher Plants: Approaches Of Gene Engineering For Temparature Tolerance, Annu. Rev. Plant Biol, 53: 225-245.
  • Kalefetoğlu, T., Ekmekçi, Y. 2005. The effects of drought on plants and tolerance mechanisms. Gazi Üniversitesi Fen Bilimleri Dergisi, 18 (4): 723-740.
  • Llinares, J.V., Bautista, I., Donat, M.DP., Lidón, A., Lull, C., Mayoral, O., Wankhade, S., Boscaiu, M., Vicente, O. 2015. Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Notulae Sci Biol., 7 (1): 37-44.
  • Matysik, J., Bhalu, B.A., Mohanty P. 2002. Molecular Mechanism of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci., 82, 525–532.
  • Molinari H.B.C, Marur C.J, Daros E., De Campos M.K.F., De Carvalho J.F.R.P., Filho J.C.B., Pereira L.F.P., Vieira L.G.E. 2007. Evaluation of the stress-inducible production of proline intransgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229.
  • Munns, R., 2005, Genes and salt tolerance: bringing them together, New Phytol., 167: 645-663.
  • Proctor, J., Woodell, S.R.J. 1975. The ecology of serpentine soils. Advances in Ecological Research 9: 255–366.
  • Pueyo, Y., Alados, C.L., Barrantes, O., Komac, B., Rietkerk, M. 2008. Differences in Gypsum Plant Communities Associated with Habitat Fragmentation and Livestock Grazing. Ecological Applications. 18(4): 954-964.
  • Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K. 2011. Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1): 89-98.
  • Saed-Moucheshi, A., Heidari, B., Zarei, M., Emam, Y., Pessarakli, M. 2013. Changes in antioxidant enzymes activity and physiological traits of wheat cultivars in response to arbuscular mycorrhizal symbiosis in different water regimes. Iran Agricultural Research, 31 (2): 35–50.
  • Saradhi, P., Alia, P., Arora, S., Prasad, K.V. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun., 209: 1-5.
  • Sharma, V., Ramawat, K.G. 2014. Salt stress enhanced antioxidant response in callus of three halophytes (Salsola baryosma, Trianthema triquetra, Zygophyllum simplex) of Thar Desert, Biologia, 69 (2): 178-185.
  • Taban, S., Güneş, A., Alpaslan, M., Özcan, H. 1999. Değişik Mısır (Zea mays L. cvs ) Çeşitlerinin Tuz Stresine Duyarlılıkları. Tr. J. Of Agriculture and Forestry, 23 (3): 625-633.
  • Taiz, L. and Zeiger, E. 2010. Plant Physiology. 5th Edition, Sinauer Associates Inc., Sunderland, 782 p.
  • Tipirdamaz, R., Gagneul, D., Duhaze, C., Ainouche, A., Monnier, C., Ozkum, D., Larher, F. 2006. Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57: 139-153.
  • Trovato, M., Forlani, G., Signorelli, S. and Dietmar Funck, D. 2019. Proline Metabolism and Its Functions in Development and Stress Tolerance. Osmoprotectant-Mediated Abiotic Stress Tolerance. In: Hossain M.A. et al. (ed.), Chapter 2, Springer Nature Switzerland, Switzerland, ISBN 978-3-030-27423-8, 41-72.
  • Verbruggen, N., Hermans, C. 2008. Proline accumulation in plants: a review. Amino Acids, 35: 753-759.
  • Vlamis, J., Jenny, H. 1948. Calcium deficiency in serpentine soils as revealed by absorbent technique. Science 107: 549-51.
  • Walker, R.B. 1954. The ecology of serpentine soils: A symposium. II. Factors affecting plant growth on serpentine soils. Ecology 35: 259-66.
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., Yoshiba, Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56 (417): 1975-1981.
  • Yaprak, A.E. 2012. Chenopodiaceae. In: Güner, A., Aslan, S., Ekim, T., Vural, M. ve Babaç, M.T. (edr.) Türkiye Bitkileri Listesi (Damarlı Bitkiler) Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını. İstanbul.
  • Yıldırımlı, Ş. 2010. Some new taxa, records and taxonomic treatments from Turkey, Ot Sistematik Botanik Dergisi 17 (2): 64-68.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

İnci Bahar Çınar 0000-0002-1983-0261

Gülizar Aydoğdu 0000-0001-8390-1477

Esra Koç 0000-0003-1531-1744

Gül Nilhan Tuğ 0000-0002-2702-2387

Proje Numarası 16L0430001
Yayımlanma Tarihi 24 Şubat 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Çınar, İ. B., Aydoğdu, G., Koç, E., Tuğ, G. N. (2021). Proline accumulation in three closely related Salsola L. taxa. International Journal of Science Letters, 3(1), 73-81. https://doi.org/10.38058/ijsl.867859
AMA Çınar İB, Aydoğdu G, Koç E, Tuğ GN. Proline accumulation in three closely related Salsola L. taxa. IJSL. Şubat 2021;3(1):73-81. doi:10.38058/ijsl.867859
Chicago Çınar, İnci Bahar, Gülizar Aydoğdu, Esra Koç, ve Gül Nilhan Tuğ. “Proline Accumulation in Three Closely Related Salsola L. Taxa”. International Journal of Science Letters 3, sy. 1 (Şubat 2021): 73-81. https://doi.org/10.38058/ijsl.867859.
EndNote Çınar İB, Aydoğdu G, Koç E, Tuğ GN (01 Şubat 2021) Proline accumulation in three closely related Salsola L. taxa. International Journal of Science Letters 3 1 73–81.
IEEE İ. B. Çınar, G. Aydoğdu, E. Koç, ve G. N. Tuğ, “Proline accumulation in three closely related Salsola L. taxa”, IJSL, c. 3, sy. 1, ss. 73–81, 2021, doi: 10.38058/ijsl.867859.
ISNAD Çınar, İnci Bahar vd. “Proline Accumulation in Three Closely Related Salsola L. Taxa”. International Journal of Science Letters 3/1 (Şubat 2021), 73-81. https://doi.org/10.38058/ijsl.867859.
JAMA Çınar İB, Aydoğdu G, Koç E, Tuğ GN. Proline accumulation in three closely related Salsola L. taxa. IJSL. 2021;3:73–81.
MLA Çınar, İnci Bahar vd. “Proline Accumulation in Three Closely Related Salsola L. Taxa”. International Journal of Science Letters, c. 3, sy. 1, 2021, ss. 73-81, doi:10.38058/ijsl.867859.
Vancouver Çınar İB, Aydoğdu G, Koç E, Tuğ GN. Proline accumulation in three closely related Salsola L. taxa. IJSL. 2021;3(1):73-81.