Araştırma Makalesi
BibTex RIS Kaynak Göster

OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES

Yıl 2019, Cilt: 2 Sayı: 2, 201 - 208, 31.10.2019

Öz

In this paper we have presented the double-ended queueing model with its
generic form, abstract modeling extensions, different types of controls to be assumed
by the management of the system, as well as optimization via various
methodologies. Since its inception in 1950s, double-ended queuing model has had
widespread use and recently it is observed that literature is focusing on
social welfare perspectives on queues under strategically acting customers and
enhanced information exchange due to advanced technology. It is also reviewed
that for the complex and analytically tractable versions of double-ended queues
it is possible to obtain approximate or near-optimal results via methodologies
such as simulation and fluid and diffusion approximations.

Kaynakça

  • Bhardwaj, R., Singh, T. P., & Kumar, V. (2014). A generalized double ended stochastic queue system with excess customer demand in real world situations. Arya Bhatta Journal of Mathematics and Informatics, 6(2), 247-260.Browne, J. J., Kelly, J. J., & Le Bourgeois, P. (1970). Maximum inventories in baggage claim: a double ended queuing system. Transportation Science, 4(1), 64-78.Degirmenci, I. T. (2010). Asymptotic analysis and performance-based design of large scale service and inventory systems (Doctoral dissertation, Department of Business Administration, Duke University).Di Crescenzo, A., Giorno, V., Kumar, B. K., & Nobile, A. G. (2012). A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation. Methodology and Computing in Applied Probability, 14(4), 937-954.Di Crescenzo, A., Giorno, V., Krishna Kumar, B., & Nobile, A. (2018). A time-non-homogeneous double-ended queue with failures and repairs and its continuous approximation. Mathematics, 6(5), 81, 1-23.Diamant, A., & Baron, O. (2019). Double-sided matching queues: Priority and impatient customers. Operations Research Letters, 47(3), 219-224.Dobbie, J. M. (1961). Letter to the Editor—A Doubled-Ended Queuing Problem of Kendall. Operations Research, 9(5), 755-757.Dolhun, K. L. (1997). A double-ended single server queueing system. Unpublished master thesis. Faculty of Graduate Studies, University of Manitoba, Canada.Elalouf, A., Perlman, Y., & Yechiali, U. (2018). A double-ended queueing model for dynamic allocation of live organs based on a best-fit criterion. Applied Mathematical Modelling, 60, 179-191.Gaur, K. N., & Kashyap, B. R. K. (1973). The double-ended queue with limited waiting space. Indian Journal of Pure and Applied Mathematics, 4, 73-81.Herlihy, M., Luchangco, V., & Moir, M. (2003, May). Obstruction-free synchronization: Double-ended queues as an example. In 23rd International Conference on Distributed Computing Systems, 2003. Proceedings. (pp. 522-529). IEEE.Jain, M. (2000). GX/GY/1 double ended queue: diffusion approximation. Journal of Statistics and Management Systems, 3(2), 193-203.Kashyap, B. R. K. (1965). A double-ended queueing system with limited waiting space. In Proc. Nat. Inst. Sci. India (Vol. 31, No. 6, pp. 559-570).Kashyap, B. R. K. (1967). Further results for the double ended queue. Metrika, 11(1), 168-186.Kim, W. K., Yoon, K. P., Mendoza, G., & Sedaghat, M. (2010). Simulation model for extended double-ended queueing. Computers & Industrial Engineering, 59(2), 209-219.Koca, E., Sedaghat, M., & Yoon, K. P. (2014). Optimal Supply & Demand Balance In Service Environments. Journal of Service Science (Online), 7(1), 43-52.Lee, C., Liu, X., Liu, Y., & Zhang, L. (2019). Optimal Control of a Time-Varying Double-Ended Production Queueing Model. Available at SSRN 3367263.Liu, X. (2019). Diffusion approximations for double-ended queues with reneging in heavy traffic. Queueing Systems, 91(1-2), 49-87.Liu, X., Gong, Q., & Kulkarni, V. G. (2014). Diffusion models for double-ended queues with renewal arrival processes. Stochastic Systems, 5(1), 1-61.Mendoza, G., Sedaghat, M., & Yoon, K. P. (2009). Queuing models to balance systems with excess supply. International Business & Economics Research Journal (IBER), 8(1), 91-104.Pandey, M. K., & Gangeshwer, D. K. (2018). Applications of the Diffusion Approximation to Hospital Sector Using G∞/GM/1 Double Ended Queue Model. Journal of Computer and Mathematical Sciences, 9(4), 302-308.Shi, Y., & Lian, Z. (2016). Optimization and strategic behavior in a passenger–taxi service system. European Journal of Operational Research, 249(3), 1024-1032.Som, P., Wilhelm, W. E., & Disney, R. L. (1994). Kitting process in a stochastic assembly system. Queueing Systems, 17(3-4), 471-490.Wang, Y., & Liu, Z. (2019). Equilibrium and Optimization in a Double-Ended Queueing System with Dynamic Control. Journal of Advanced Transportation, 2019, 1-13.Wang, F., Wang, J., & Zhang, Z. G. (2017). Strategic behavior and social optimization in a double-ended queue with gated policy. Computers & Industrial Engineering, 114, 264-273.

ÇİFT-TARAFLI KUYRUK (BEKLEME) SİSTEMLERİNDE OPERASYON YÖNETİMİ

Yıl 2019, Cilt: 2 Sayı: 2, 201 - 208, 31.10.2019

Öz

Bu makalede, çift taraflı kuyruk (bekleme) modelinin
genel formunu, soyut modelleme yaklaşımları, sistemin yönetim tarafından
üstlenilen farklı kontrol türleri ve çeşitli metotlarla optimizasyonu ile
beraber sunulmuştur. 1950’lerde oluşturulmasından bu yana, çift taraflı kuyruk
(bekleme) modeli yaygın bir şekilde kullanılmaya başlanmış ve son zamanlarda
literatürün stratejik olarak hareket eden müşterilerin ve ileri teknoloji
nedeniyle gelişmiş bilgi alışverişinin olduğu kuyruklar üzerindeki sosyal refah
perspektiflerine odaklandığı görülmüştür. Ayrıca, çift taraflı kuyrukların
(bekleme sırası) karmaşık ve analitik olarak incelenemez versiyonları için,
simülasyon ve akışkan ve difüzyon yaklaşımları gibi metodolojilerle yaklaşık
olarak optimum ya da en uyguna yakın sonuçların elde edilmesinin mümkün olduğu
da belirtilmiştir.

Kaynakça

  • Bhardwaj, R., Singh, T. P., & Kumar, V. (2014). A generalized double ended stochastic queue system with excess customer demand in real world situations. Arya Bhatta Journal of Mathematics and Informatics, 6(2), 247-260.Browne, J. J., Kelly, J. J., & Le Bourgeois, P. (1970). Maximum inventories in baggage claim: a double ended queuing system. Transportation Science, 4(1), 64-78.Degirmenci, I. T. (2010). Asymptotic analysis and performance-based design of large scale service and inventory systems (Doctoral dissertation, Department of Business Administration, Duke University).Di Crescenzo, A., Giorno, V., Kumar, B. K., & Nobile, A. G. (2012). A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation. Methodology and Computing in Applied Probability, 14(4), 937-954.Di Crescenzo, A., Giorno, V., Krishna Kumar, B., & Nobile, A. (2018). A time-non-homogeneous double-ended queue with failures and repairs and its continuous approximation. Mathematics, 6(5), 81, 1-23.Diamant, A., & Baron, O. (2019). Double-sided matching queues: Priority and impatient customers. Operations Research Letters, 47(3), 219-224.Dobbie, J. M. (1961). Letter to the Editor—A Doubled-Ended Queuing Problem of Kendall. Operations Research, 9(5), 755-757.Dolhun, K. L. (1997). A double-ended single server queueing system. Unpublished master thesis. Faculty of Graduate Studies, University of Manitoba, Canada.Elalouf, A., Perlman, Y., & Yechiali, U. (2018). A double-ended queueing model for dynamic allocation of live organs based on a best-fit criterion. Applied Mathematical Modelling, 60, 179-191.Gaur, K. N., & Kashyap, B. R. K. (1973). The double-ended queue with limited waiting space. Indian Journal of Pure and Applied Mathematics, 4, 73-81.Herlihy, M., Luchangco, V., & Moir, M. (2003, May). Obstruction-free synchronization: Double-ended queues as an example. In 23rd International Conference on Distributed Computing Systems, 2003. Proceedings. (pp. 522-529). IEEE.Jain, M. (2000). GX/GY/1 double ended queue: diffusion approximation. Journal of Statistics and Management Systems, 3(2), 193-203.Kashyap, B. R. K. (1965). A double-ended queueing system with limited waiting space. In Proc. Nat. Inst. Sci. India (Vol. 31, No. 6, pp. 559-570).Kashyap, B. R. K. (1967). Further results for the double ended queue. Metrika, 11(1), 168-186.Kim, W. K., Yoon, K. P., Mendoza, G., & Sedaghat, M. (2010). Simulation model for extended double-ended queueing. Computers & Industrial Engineering, 59(2), 209-219.Koca, E., Sedaghat, M., & Yoon, K. P. (2014). Optimal Supply & Demand Balance In Service Environments. Journal of Service Science (Online), 7(1), 43-52.Lee, C., Liu, X., Liu, Y., & Zhang, L. (2019). Optimal Control of a Time-Varying Double-Ended Production Queueing Model. Available at SSRN 3367263.Liu, X. (2019). Diffusion approximations for double-ended queues with reneging in heavy traffic. Queueing Systems, 91(1-2), 49-87.Liu, X., Gong, Q., & Kulkarni, V. G. (2014). Diffusion models for double-ended queues with renewal arrival processes. Stochastic Systems, 5(1), 1-61.Mendoza, G., Sedaghat, M., & Yoon, K. P. (2009). Queuing models to balance systems with excess supply. International Business & Economics Research Journal (IBER), 8(1), 91-104.Pandey, M. K., & Gangeshwer, D. K. (2018). Applications of the Diffusion Approximation to Hospital Sector Using G∞/GM/1 Double Ended Queue Model. Journal of Computer and Mathematical Sciences, 9(4), 302-308.Shi, Y., & Lian, Z. (2016). Optimization and strategic behavior in a passenger–taxi service system. European Journal of Operational Research, 249(3), 1024-1032.Som, P., Wilhelm, W. E., & Disney, R. L. (1994). Kitting process in a stochastic assembly system. Queueing Systems, 17(3-4), 471-490.Wang, Y., & Liu, Z. (2019). Equilibrium and Optimization in a Double-Ended Queueing System with Dynamic Control. Journal of Advanced Transportation, 2019, 1-13.Wang, F., Wang, J., & Zhang, Z. G. (2017). Strategic behavior and social optimization in a double-ended queue with gated policy. Computers & Industrial Engineering, 114, 264-273.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

İsilay Talay 0000-0002-8956-9505

Yayımlanma Tarihi 31 Ekim 2019
Gönderilme Tarihi 25 Kasım 2019
Kabul Tarihi 27 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Talay, İ. (2019). OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES. İzmir Katip Çelebi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 2(2), 201-208.
AMA Talay İ. OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES. IKCIIBFD. Ekim 2019;2(2):201-208.
Chicago Talay, İsilay. “OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES”. İzmir Katip Çelebi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 2, sy. 2 (Ekim 2019): 201-8.
EndNote Talay İ (01 Ekim 2019) OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES. İzmir Katip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2 2 201–208.
IEEE İ. Talay, “OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES”, IKCIIBFD, c. 2, sy. 2, ss. 201–208, 2019.
ISNAD Talay, İsilay. “OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES”. İzmir Katip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2/2 (Ekim 2019), 201-208.
JAMA Talay İ. OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES. IKCIIBFD. 2019;2:201–208.
MLA Talay, İsilay. “OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES”. İzmir Katip Çelebi Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, c. 2, sy. 2, 2019, ss. 201-8.
Vancouver Talay İ. OPERATIONS MANAGEMENT FOR DOUBLE-ENDED QUEUES. IKCIIBFD. 2019;2(2):201-8.
Creative Commons Lisansı
İzmir Katip Çelebi Üniversitesi İktisadi ve İdari Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.