Research Article
BibTex RIS Cite

Action of Crossed Modules and Bar Construction

Year 2025, Volume: 7 Issue: 1, 49 - 61, 24.07.2025
https://doi.org/10.54286/ikjm.1536223

Abstract

If a group $N$ acts on a set $X$, a simplicial set $Bar(X,N)$ using the usual bar construction has been provided. In this construction, if the group $N$ acts on a group $G$ via a homomorphism $f:N\rightarrow G$, then $Bar(G,N)$ has a simplicial set structure. In the case of $f$ has a crossed module structure, $Bar(G,N)$ has a normal simplicial group structure. In this work, by defining an action of a crossed module $\partial: N_1 \longrightarrow X_1$ on a homomorphism of groups $f: N_2 \longrightarrow X_2 $ via a double map $\alpha: \partial\rightarrow f$, we will construct a bisimplicial set, using the 2-dimensional version of the usual Bar construction.

References

  • Z. ARVASI and T. PORTER, Freeness conditions for 2-crossed module of commutative algebras, Applied Categorical Structures, 6, (1998), 455-477.
  • P. CARRASCO and A.M. CEGARRA, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
  • D. CONDUCHÉ, Modules croisés généralisés de longueur 2. Jour. Pure and Applied Algebra, 34, (1984), 155-178.
  • J. DUSKIN, Simplicials methods and the interpretation of triple cohomology, Memoirs A.M.S., Vol.3, (1975), 163.
  • G.J. ELLIS, Higher dimensional crossed modules of algebras, Journal of Pure and Applied Algebra, 52, (1988), 277-282.
  • E. D. FARJOUN and Y. SEGEV, Crossed modules as homotopy normal maps, Topology and its Applications, 157, (2010), 359-368.
  • T. PORTER, Homology of commutative algebras and an invariant of Simis and Vasconceles, Journal of Algebra , 99, (1986), 458-465.
  • T. PORTER The Crossed Menagerie: an introduction to crossed gadgetry and co-homology in algebra and topology, (2011), (available from the n-Lab, http://ncatlab.org/nlab/show/Menagerie).
  • W. DWYER and E.D. FARJOUN, The localization and cellularization of principal fibrations, Alpine perspectives on algebraic topology, 117-124, Contemp. Math., 504, Amer. Math. Soc., Providence, RI, 2009, available from http://www3.nd.edu/~wgd/drafts/cellular.pdf
  • L.ILLUSIE, Complex cotangent et deformations I, II. Springer Lecture Notes in Math., 239 (1971), II: 283, (1972).
  • M. PREZMA, Homotopy normal maps, http://arxiv.org/pdf/1011.4708v7.pdf, 2012.
  • D. GUIN-WALÉRY and J-L. LODAY, Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lect. Notes Math., vol.854, pp 179- 216), Berlin Heidelberg New York: Springer (1981).
  • J.H.C. WHITEHEAD, Combinatorial homotopy , Bull. Amer. Math. Soc., 55, (1949), 453-496.

Year 2025, Volume: 7 Issue: 1, 49 - 61, 24.07.2025
https://doi.org/10.54286/ikjm.1536223

Abstract

References

  • Z. ARVASI and T. PORTER, Freeness conditions for 2-crossed module of commutative algebras, Applied Categorical Structures, 6, (1998), 455-477.
  • P. CARRASCO and A.M. CEGARRA, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
  • D. CONDUCHÉ, Modules croisés généralisés de longueur 2. Jour. Pure and Applied Algebra, 34, (1984), 155-178.
  • J. DUSKIN, Simplicials methods and the interpretation of triple cohomology, Memoirs A.M.S., Vol.3, (1975), 163.
  • G.J. ELLIS, Higher dimensional crossed modules of algebras, Journal of Pure and Applied Algebra, 52, (1988), 277-282.
  • E. D. FARJOUN and Y. SEGEV, Crossed modules as homotopy normal maps, Topology and its Applications, 157, (2010), 359-368.
  • T. PORTER, Homology of commutative algebras and an invariant of Simis and Vasconceles, Journal of Algebra , 99, (1986), 458-465.
  • T. PORTER The Crossed Menagerie: an introduction to crossed gadgetry and co-homology in algebra and topology, (2011), (available from the n-Lab, http://ncatlab.org/nlab/show/Menagerie).
  • W. DWYER and E.D. FARJOUN, The localization and cellularization of principal fibrations, Alpine perspectives on algebraic topology, 117-124, Contemp. Math., 504, Amer. Math. Soc., Providence, RI, 2009, available from http://www3.nd.edu/~wgd/drafts/cellular.pdf
  • L.ILLUSIE, Complex cotangent et deformations I, II. Springer Lecture Notes in Math., 239 (1971), II: 283, (1972).
  • M. PREZMA, Homotopy normal maps, http://arxiv.org/pdf/1011.4708v7.pdf, 2012.
  • D. GUIN-WALÉRY and J-L. LODAY, Obsructioná l’excision en K-theories algébrique, In: Friedlander, E.M.,Stein, M.R.(eds.) Evanston conf. on algebraic K-Theory 1980, (Lect. Notes Math., vol.854, pp 179- 216), Berlin Heidelberg New York: Springer (1981).
  • J.H.C. WHITEHEAD, Combinatorial homotopy , Bull. Amer. Math. Soc., 55, (1949), 453-496.
There are 13 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Category Theory, K Theory, Homological Algebra
Journal Section Articles
Authors

Emrah Ceyran 0000-0001-8210-0782

Erdal Ulualan 0000-0002-4823-8267

Early Pub Date May 25, 2025
Publication Date July 24, 2025
Submission Date August 20, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Ceyran, E., & Ulualan, E. (2025). Action of Crossed Modules and Bar Construction. Ikonion Journal of Mathematics, 7(1), 49-61. https://doi.org/10.54286/ikjm.1536223
AMA Ceyran E, Ulualan E. Action of Crossed Modules and Bar Construction. ikjm. July 2025;7(1):49-61. doi:10.54286/ikjm.1536223
Chicago Ceyran, Emrah, and Erdal Ulualan. “Action of Crossed Modules and Bar Construction”. Ikonion Journal of Mathematics 7, no. 1 (July 2025): 49-61. https://doi.org/10.54286/ikjm.1536223.
EndNote Ceyran E, Ulualan E (July 1, 2025) Action of Crossed Modules and Bar Construction. Ikonion Journal of Mathematics 7 1 49–61.
IEEE E. Ceyran and E. Ulualan, “Action of Crossed Modules and Bar Construction”, ikjm, vol. 7, no. 1, pp. 49–61, 2025, doi: 10.54286/ikjm.1536223.
ISNAD Ceyran, Emrah - Ulualan, Erdal. “Action of Crossed Modules and Bar Construction”. Ikonion Journal of Mathematics 7/1 (July2025), 49-61. https://doi.org/10.54286/ikjm.1536223.
JAMA Ceyran E, Ulualan E. Action of Crossed Modules and Bar Construction. ikjm. 2025;7:49–61.
MLA Ceyran, Emrah and Erdal Ulualan. “Action of Crossed Modules and Bar Construction”. Ikonion Journal of Mathematics, vol. 7, no. 1, 2025, pp. 49-61, doi:10.54286/ikjm.1536223.
Vancouver Ceyran E, Ulualan E. Action of Crossed Modules and Bar Construction. ikjm. 2025;7(1):49-61.