Meme kanseri, çoğalan ve çoğu zaman tümör adı verilen bir kitle oluşturan bazı hücrelerin bozulmasından kaynaklanır. Tümörler iyi huylu (kanserli olmayan) veya kötü huylu (kanserli) olabilmektedir. MRG (manyetik rezonans görüntüleme), mamogram, ultrason ve biyopsi gibi testler yaygın olarak yapılan meme kanserini teşhis etmek için kullanılır. Verilerde iki farklı etiket olduğundan, tahmin iki kategoriye ayrılır (Kötü huylu veya iyi huylu). Makine öğreniminde bu bir sınıflandırma problemi olarak tanımlanır. Bu çalışma, meme kanserinin iyi huylu veya kötü huylu olup olmadığını sınıflandırmayı ve belirli bir süre sonra kötü huylu vakaların nüksünü ve nüksünü öngörmeyi amaçlamaktadır. Kullanılan metodoloji sınıflandırma modelini ve sinir ağları metodunu içerir. Python modülleri, verileri iyi bir şekilde kavramak ve verilerin farklı şekillerde nasıl ele alınacağını düşünmek için verileri tanımak amacıyla harici veri kümelerini içe aktarmak için kullanılmaktadır. Bu amaçla veri setinden makine öğreniminin temel kavramları uygulanır ve sonuçlar veri setine göre değerlendirilir. Bu nedenle, meme kanseri tahmininde yüksek bir doğruluk elde etmek için sinir ağı yöntemleri ve sınıflandırma yöntemleri birbirleriyle karşılaştırılmaktadır
Breast cancer is caused by the breakdown of some cells that multiply and often form a mass called a tumor. Tumors can be benign (not cancerous) or malignant (cancerous). Tests such as MRI (magnetic resonance imaging), mammogram, ultrasound, and biopsy are used to diagnose common breast cancer. Since there are two different labels in the data, the estimate is divided into two categories (benign or malignant). In machine learning, this is defined as a classification problem. This study aims to classify whether breast cancer is benign or malignant and predict the relapse and relapse of malignant cases after a certain period of time. The methodology used includes the classification model and neural network methods. Python modules are used to import external datasets in order to grasp the data well and to think about how to handle the data in different ways. For this purpose, basic concepts of machine learning are applied from the dataset and the results are evaluated according to the dataset. Therefore, neural network methods and classification methods are compared with each other to achieve a high accuracy in breast cancer estimation.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Yayımlanma Tarihi | 22 Ağustos 2020 |
Gönderilme Tarihi | 24 Temmuz 2020 |
Kabul Tarihi | 17 Ağustos 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 1 Sayı: 1 |