Derleme
BibTex RIS Kaynak Göster

Robotic Design and Modelling of Medical Lower Extremity Exoskeletons

Yıl 2020, Cilt: 1 Sayı: 2, 198 - 214, 31.12.2020

Öz

This study aims to explain the development of the robotic Lower Extremity Exoskeleton (LEE) systems between 1960 and 2019 in chronological order. The scans performed in the exoskeleton system’s design have shown that a modeling program, such as AnyBody, and OpenSim, should be used first to observe the design and software animation, followed by the mechanical development of the system using sensors and motors. Also, the use of OpenSim and AnyBody musculoskeletal system software has been proven to play an essential role in designing the human-exoskeleton by eliminating the high costs and risks of the mechanical designs. Furthermore, these modeling systems can enable rapid optimization of the LEE design by detecting the forces and torques falling on the human muscles.

Kaynakça

  • Agarwal, P., Narayanan, M. S., Lee, L.-F., Mendel, F., & Krovi, V. N. (2010). Simulation-based design of exoskeletons using musculoskeletal analysis. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  • Agrawal, A., Dube, A. N., Kansara, D., Shah, S., & Sheth, S. (2016). Exoskeleton: the friend of mankind in context of rehabilitation and enhancement. Indian Journal of Science and Technology, 9(S1).
  • Alamdari, A., & Krovi, V. N. (2017). A review of computational musculoskeletal analysis of human lower extremities Human Modelling for Bio-Inspired Robotics (pp. 37-73): Elsevier.
  • Ansari, A., Atkeson, C. G., Choset, H., & Travers, M. (2015). A survey of current exoskeletons and their control architectures and algorithms (Draft 4.0): Pittsburgh, USA: Carnegie Mellon University. Arslan, Y. Z., Karabulut, D., Ortes, F., & Popovic, M. B. (2019). Exoskeletons, Exomusculatures, Exosuits: Dynamic Modeling and Simulation. Biomechatronics, 305.
  • Ashkani, O., Maleki, A., & Jamshidi, N. (2017). Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle. Australasian physical & engineering sciences in medicine, 40(1), 137-144.
  • Banala, S. K., Kim, S. H., Agrawal, S. K., & Scholz, J. P. (2008). Robot assisted gait training with active leg exoskeleton (ALEX). Paper presented at the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.
  • Baskar, H., & Nadaradjane, S. M. R. (2016). Minimization of metabolic cost of muscles based on human exoskeleton modeling: a simulation. Int. J. Biomed. Eng. Sci, 3(4), 9.
  • Bionics, E. (2016). Ekso GT Robotic Exoskeleton cleared by FDA for use with stroke and spinal cord injury patients.
  • Bogue, R. (2015). Robotic exoskeletons: a review of recent progress. Industrial Robot: An International Journal.
  • Brenner, L. (2016). Exploring the psychosocial impact of Ekso Bionics Technology. Archives of Physical Medicine and Rehabilitation, 97(10), e113.
  • Bulea, T. C., Lerner, Z. F., & Damiano, D. L. (2018). Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control. Paper presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
  • Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., . . . Bramanti, P. (2016). Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurological Sciences, 37(4), 503-514.
  • Cestari, M., Sanz-Merodio, D., Arevalo, J. C., & Garcia, E. (2014). ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton. Industrial Robot: An International Journal, 41(6), 518-526.
  • Cha, D., & Kim, K. I. (2018). A lower limb exoskeleton based on recognition of lower limb walking intention. Transactions of the Canadian Society for Mechanical Engineering, 43(1), 102-111.
  • Chen, B., Ma, H., Qin, L.-Y., Gao, F., Chan, K.-M., Law, S.-W., . . . Liao, W.-H. (2016). Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 5, 26-37.
  • Chen, B., Ma, H., Qin, L.-Y., Guan, X., Chan, K.-M., Law, S.-W., . . . Liao, W.-H. (2015). Design of a lower extremity exoskeleton for motion assistance in paralyzed individuals. Paper presented at the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Chen, B., Zhao, X., Ma, H., Qin, L., & Liao, W.-H. (2017). Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton. Smart Materials and Structures, 26(10), 105008.
  • Chen, B., Zhong, C.-H., Ma, H., Guan, X., Qin, L.-Y., Chan, K.-M., . . . Liao, W.-H. (2018). Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica, 36(4), 535.
  • Chen, B., Zhong, C.-H., Zhao, X., Ma, H., Guan, X., Li, X., . . . Law, S.-W. (2017). A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 11, 7-18.
  • Chen, G., Salim, V., & Yu, H. (2015). A novel gait phase-based control strategy for a portable knee-ankle-foot robot. Paper presented at the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR).
  • Chen, G., & Yu, H. (2014). A portable powered knee-ankle-foot orthosis. Journal of Medical Devices, 8(2), 020927. Chinmilli, P., Redkar, S., Zhang, W., & Sugar, T. (2017). A review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons. Int. Robot. Autom. J, 3(7), 00080.
  • Cho, K., Kim, Y., Yi, D., Jung, M., & Lee, K. (2012). Analysis and evaluation of a combined human-exoskeleton model under two different constraints condition. Proceedings of the International Summit on Human Simulation, 23-25.
  • Costa, N., & Caldwell, D. G. (2006). Control of a biomimetic" soft-actuated" 10dof lower body exoskeleton. Paper presented at the The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006.
  • Crea, S., Nann, M., Trigili, E., Cordella, F., Baldoni, A., Badesa, F. J., . . . Aracil, N. G. (2018). Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Scientific reports, 8(1), 10823.
  • Daines, K. Crutch Assisted Sit-to-Stand and Stand-to-Sit with a Powered Exoskeleton.
  • Díez, J. A., Blanco, A., Catalán, J. M., Bertomeu-Motos, A., Badesa, F. J., & García-Aracil, N. (2017). Mechanical design of a novel hand exoskeleton driven by linear actuators. Paper presented at the Iberian Robotics Conference.
  • Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American journal of physical medicine & rehabilitation, 91(11), 911-921.
  • Federici, S., Meloni, F., Bracalenti, M., & De Filippis, M. L. (2015). The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation, 37(3), 321-340.
  • Ferrari, A., Benedetti, M. G., Pavan, E., Frigo, C., Bettinelli, D., Rabuffetti, M., . . . Leardini, A. (2008). Quantitative comparison of five current protocols in gait analysis. Gait & posture, 28(2), 207-216.
  • Fournier, B. (2018). Model and Characterization of a Passive Biomimetic Ankle for Lower Extremity Powered Exoskeleton. Université d'Ottawa/University of Ottawa.
  • Fournier, B. N., Lemaire, E. D., Smith, A. J., & Doumit, M. (2018). Modeling and simulation of a lower extremity powered exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 26(8), 1596-1603.
  • Fuse, I., Hirano, S., Saitoh, E., Otaka, Y., Shigeo Tanabe, R., Masaki Katoh, R., . . . Tetsuya Tsunoda, M. (2019). Gait reconstruction using the gait assist robot WPAL in patients with cervical spinal cord injury. injury, 10, 88-95.
  • González-Vargas, J., Ibáñez, J., Contreras-Vidal, J. L., Van der Kooij, H., & Pons, J. L. (2016). Wearable Robotics: Challenges and Trends: Proceedings of the 2nd International Symposium on Wearable Robotics, WeRob2016, October 18-21, 2016, Segovia, Spain (Vol. 16): Springer.
  • Grasmücke, D., Cruciger, O., Meindl, R. C., Schildhauer, T. A., & Aach, M. (2017). Experiences in four years of HAL exoskeleton SCI rehabilitation Converging Clinical and Engineering Research on Neurorehabilitation II (pp. 1235-1238): Springer.
  • Gurvinder, B. S. R. A. S., & Virk, S. (2016). Lower Limb Exoskeletons: A Brief Review.
  • Haeberle, H. S., Helm, J. M., Navarro, S. M., Karnuta, J. M., Schaffer, J. L., Callaghan, J. J., . . . Ramkumar, P. N. (2019). Artificial intelligence and machine learning in lower extremity arthroplasty: a review. The Journal of arthroplasty.
  • Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., . . . Farris, R. (2015). Mobility outcomes following five training sessions with a powered exoskeleton. Topics in spinal cord injury rehabilitation, 21(2), 93-99.
  • Hussain, S., Jamwal, P. K., & Ghayesh, M. H. (2017). Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Computer methods in biomechanics and biomedical engineering, 20(6), 626-635.
  • Huysamen, K., Nugent, R., & O’Sullivan, L. BIOMECHANICAL AND PHYSIOLOGICAL ANALYSIS OF AN EXOSKELETON FOR MANUAL HANDLING. Irish Ergonomics Society, 16.
  • Jin, X. (2018). A Novel Design of a Cable-driven Active Leg Exoskeleton (C-ALEX) and Gait Training with Human Subjects: Columbia University.
  • Jin, X., Cai, Y., Prado, A., & Agrawal, S. K. (2017). Effects of exoskeleton weight and inertia on human walking. Paper presented at the 2017 IEEE International Conference on Robotics and Automation (ICRA).
  • Khamar, M., Edrisi, M., & Zahiri, M. (2019). Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction. MethodsX, 6, 1838-1846.
  • Kim, J.-H., Shim, M., Ahn, D. H., Son, B. J., Kim, S.-Y., Kim, D. Y., . . . Cho, B.-K. (2015). Design of a knee exoskeleton using foot pressure and knee torque sensors. International Journal of Advanced Robotic Systems, 12(8), 112.
  • Kim, W., Kim, H., Lim, D., Moon, H., & Han, C. (2017). Design and kinematic analysis of the hanyang exoskeleton assistive robot (HEXAR) for human synchronized motion Wearable Robotics: Challenges and Trends (pp. 275-279): Springer.
  • Kirsch, N., Alibeji, N., Dicianno, B. E., & Sharma, N. (2016). Switching control of functional electrical stimulation and motor assist for muscle fatigue compensation. Paper presented at the 2016 American Control Conference (ACC).
  • Lajeunesse, V., Routhier, F., Vincent, C., Lettre, J., & Michaud, F. (2018). Perspectives of individuals with incomplete spinal cord injury concerning the usability of lower limb exoskeletons: an exploratory study. Technology and Disability, 30(1-2), 63-76.
  • Li, J., Zuo, S., Xu, C., Zhang, L., Dong, M., Tao, C., & Ji, R. (2019). Influence of a Compatible Design on Physical Human-Robot Interaction Force: a Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. Journal of Intelligent & Robotic Systems, 1-14.
  • Li, N., Yan, L., Qian, H., Wu, H., Wu, J., & Men, S. (2015). Review on lower extremity exoskeleton robot. The Open Automation and Control Systems Journal, 7(1).
  • Li, Y., Li, Z., Penzlin, B., Tang, Z., Liu, Y., Guan, X., . . . Leonhardt, S. (2019). Design of the clutched variable parallel elastic actuator (CVPEA) for lower limb exoskeletons. Paper presented at the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
  • Liang, F.-Y., Zhong, C.-H., Zhao, X., Castro, D. L., Chen, B., Gao, F., & Liao, W.-H. (2018). Online adaptive and lstm-based trajectory generation of lower limb exoskeletons for stroke rehabilitation. Paper presented at the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Ling, W., Yu, G., & Li, Z. (2019). Lower Limb Exercise Rehabilitation Assessment Based on Artificial Intelligence and Medical Big Data. IEEE Access, 7, 126787-126798.
  • Louie, D. R., Eng, J. J., & Lam, T. (2015). Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of neuroengineering and rehabilitation, 12(1), 82.
  • Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., & Xie, S. S. (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132-145.
  • Michaud, B., Cherni, Y., Begon, M., Girardin-Vignola, G., & Roussel, P. (2017). A serious game for gait rehabilitation with the Lokomat. Paper presented at the 2017 International Conference on Virtual Rehabilitation (ICVR).
  • Mironov, V. I., Kastalskiy, I., Lobov, S., & Kazantsev, V. B. (2017). A Biofeedback Control System of the Exoskeleton Trainer for Lower Limbs Motor Function Recovery. Paper presented at the NEUROTECHNIX.
  • Mortensen, J., & Merryweather, A. (2018). Using OpenSim to Investigate the Effect of Active Muscles and Compliant Flooring on Head Injury Risk. Paper presented at the Congress of the International Ergonomics Association.
  • Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Al Mahmud, A. (2019). Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients’ Rehabilitation: Systematic Review. JMIR rehabilitation and assistive technologies, 6(2), e12010.
  • Murray, S., & Goldfarb, M. (2012). Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. Paper presented at the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J.-W., Lee, H. J., & Yoo, A. (2017). Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Journal of neuroengineering and rehabilitation, 14(1), 24.
  • Neuhaus, P. D., Noorden, J. H., Craig, T. J., Torres, T., Kirschbaum, J., & Pratt, J. E. (2011). Design and evaluation of Mina: A robotic orthosis for paraplegics. Paper presented at the 2011 IEEE international conference on rehabilitation robotics. O'Sullivan, S. B., Schmitz, T. J., & Fulk, G. (2019). Physical rehabilitation: FA Davis.
  • Önen, Ü., Botsalı, F. M., Kalyoncu, M., Şahin, Y., & Tınkır, M. (2017). Design and Motion Control of a Lower Limb Robotic Exoskeleton. Mechatronic Systems in Engineering: Design, Control and Applications of, 135.
  • Ortlieb, A., Bouri, M., & Bleuler, H. (2017). AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases Wearable Robotics: Challenges and Trends (pp. 439-443): Springer.
  • Park, J.-H., Lee, J.-S., Shin, J.-S., & Cho, B.-K. (2015). Design of a lower limb exoskeleton including roll actuation to assist walking and standing up. Paper presented at the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).
  • Poberznik, A. (2018). Therapeutic use of exoskeletons in spinal cord injury gait rehabilitation-a systematic literature review.
  • Raab, K., Krakow, K., Tripp, F., & Jung, M. (2016). Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal cord series and cases, 2, 15025.
  • RANJITHA, K. (2019). Hiking Aid for Rewalk. Paper presented at the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS).
  • Ren, Z., Deng, C., Zhao, K., & Li, Z. (2018). The development of a high-speed lower-limb robotic exoskeleton. Science China Information Sciences, 62(5), 50202.
  • Riener, R. (2016). Technology of the robotic gait orthosis Lokomat Neurorehabilitation Technology (pp. 395-407): Springer.
  • Roer, R., Abehsera, S., & Sagi, A. (2015). Exoskeletons across the Pancrustacea: comparative morphology, physiology, biochemistry and genetics. Integrative and comparative biology, 55(5), 771-791.
  • Rupal, B., Singla, A., & Virk, G. (2016). Lower limb exoskeletons: a brief review. Paper presented at the Conference on mechanical engineering and technology (COMET-2016), IIT (BHU), Varanasi, India.
  • Sanz-Merodio, D., Cestari, M., Arevalo, J. C., & Garcia, E. (2012). A lower-limb exoskeleton for gait assistance in quadriplegia. Paper presented at the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Sapiee, M., Marhaban, M., Ishak, A., & Miskon, M. (2018). An approach to data utilization of the lokomat rehabilitation robot. International Journal of Human and Technology Interaction (IJHaTI), 2(1), 51-56.
  • Shah, B., Mascarenhas, E., Menon, S., & Mengle, S. (2019). Exoskeleton for Support And Strength Enhancement.
  • Sirlantzis, K., Larsen, L. B., Kanumuru, L. K., & Oprea, P. (2019). Robotics Handbook of Electronic Assistive Technology (pp. 311-345): Elsevier.
  • Skantze, G., & Johansson, M. (2015). Modelling situated human-robot interaction using IrisTK. Paper presented at the Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
  • Valente, G., Crimi, G., Vanella, N., Schileo, E., & Taddei, F. (2017). nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim. Computer methods and programs in biomedicine, 152, 85-92.
  • van Hedel, H. J., & Aurich, T. (2016). Clinical application of rehabilitation technologies in children undergoing neurorehabilitation Neurorehabilitation Technology (pp. 283-308): Springer.
  • Virk, G. S., Haider, U., Nyoman, I., Masud, N., Mamaev, I., Hopfgarten, P., & Hein, B. (2016). Design of EXO-LEGS exoskeletons. Paper presented at the ASSISTIVE ROBOTICS: Proceedings of the 18th International Conference on CLAWAR 2015.
  • Wallard, L., Dietrich, G., Kerlirzin, Y., & Bredin, J. (2015). Effects of robotic gait rehabilitation on biomechanical parameters in the chronic hemiplegic patients. Neurophysiologie Clinique/Clinical Neurophysiology, 45(3), 215-219.
  • Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., . . . Molinari, M. (2014). Design and control of the MINDWALKER exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 23(2), 277-286.
  • Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., . . . Molinari, M. (2015). Design and control of the MINDWALKER exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 23(2), 277-286.
  • Weerasingha, A., Withanage, W., Pragnathilaka, A., Ranaweera, R., & Gopura, R. (2018). Powered ankle exoskeletons: existent designs and control systems. Paper presented at the in IEEE Int. Conf. on Artific. Life and Robot.
  • Wu, Y., Zhu, A., Shen, H., Shen, Z., Zhang, X., & Cao, G. (2019). Biomechanical simulation analysis of human lower limbs assisted by exoskeleton. Paper presented at the 2019 16th International Conference on Ubiquitous Robots (UR).
  • Xinyi, Z., Haoping, W., Yang, T., Zefeng, W., & Laurent, P. (2015). Modeling, simulation & control of human lower extremity exoskeleton. Paper presented at the 2015 34th Chinese Control Conference (CCC).
  • Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64, 120-136.
  • Yatsuya, K., Hirano, S., Saitoh, E., Tanabe, S., Tanaka, H., Eguchi, M., . . . Kagaya, H. (2018). Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO). The journal of spinal cord medicine, 41(1), 48-54.
  • Yeem, S., Heo, J., Kim, H., & Kwon, Y. (2018). Technical analysis of exoskeleton robot. World Journal of Engineering and Technology, 7(1), 68-79.
  • Yeung, L.-F., & Tong, R. K.-Y. (2018). Lower Limb Exoskeleton Robot to Facilitate the Gait of Stroke Patients. Wearable Technology in Medicine and Health Care, 91.
  • Yue, C., Lin, X., Zhang, X., Qiu, J., & Cheng, H. (2018). Design and performance evaluation of a wearable sensing system for lower-limb exoskeleton. Applied bionics and biomechanics, 2018.
  • Zhang, G., Liu, G., Ma, S., Wang, T., Zhao, J., & Zhu, Y. (2017). Biomechanical design of escalading lower limb exoskeleton with novel linkage joints. Technology and Health Care, 25(S1), 267-273.
  • Zhou, L., Bai, S., Andersen, M. S., & Rasmussen, J. (2015). Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity.
  • Zhou, L., Li, Y., & Bai, S. (2017). A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Robotics and Autonomous Systems, 91, 337-347.
  • Zoss, A., Kazerooni, H., & Chu, A. (2005). On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). Paper presented at the 2005 IEEE/RSJ international conference on intelligent robots and systems.

Robotik Alt Ekstremite Dış İskeletlerin Modellenmesi ve Tasarımı

Yıl 2020, Cilt: 1 Sayı: 2, 198 - 214, 31.12.2020

Öz

Bu çalışmanın amacı, 1960-2019 yılları arasında robotik Alt Ekstremite Dış İskelet (LEE) sistemlerinin gelişimini kronolojik sırayla açıklamaktır. Dış iskelet sisteminin tasarımında yapılan taramalar, öncelikle tasarım ve yazılım animasyonunu gözlemlemek için AnyBody ve OpenSim gibi bir modelleme programının kullanılması gerektiğini, ardından sensörler ve motorlar kullanılarak sistemin mekanik olarak geliştirilmesi gerektiğini göstermiştir. Ayrıca OpenSim ve AnyBody kas-iskelet sistemi yazılımlarının kullanımının, mekanik tasarımların yüksek maliyet ve risklerini ortadan kaldırarak insan-dış iskelet tasarımında önemli rol oynadığı kanıtlanmıştır. Ayrıca, bu modelleme sistemleri, insan kaslarına düşen kuvvetleri ve torkları tespit ederek LEE tasarımının hızlı optimizasyonunu sağlayabilir.

Destekleyen Kurum

Erciyes BAP

Teşekkür

Erciyes BAP birimine teşekkür ederiz.

Kaynakça

  • Agarwal, P., Narayanan, M. S., Lee, L.-F., Mendel, F., & Krovi, V. N. (2010). Simulation-based design of exoskeletons using musculoskeletal analysis. Paper presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  • Agrawal, A., Dube, A. N., Kansara, D., Shah, S., & Sheth, S. (2016). Exoskeleton: the friend of mankind in context of rehabilitation and enhancement. Indian Journal of Science and Technology, 9(S1).
  • Alamdari, A., & Krovi, V. N. (2017). A review of computational musculoskeletal analysis of human lower extremities Human Modelling for Bio-Inspired Robotics (pp. 37-73): Elsevier.
  • Ansari, A., Atkeson, C. G., Choset, H., & Travers, M. (2015). A survey of current exoskeletons and their control architectures and algorithms (Draft 4.0): Pittsburgh, USA: Carnegie Mellon University. Arslan, Y. Z., Karabulut, D., Ortes, F., & Popovic, M. B. (2019). Exoskeletons, Exomusculatures, Exosuits: Dynamic Modeling and Simulation. Biomechatronics, 305.
  • Ashkani, O., Maleki, A., & Jamshidi, N. (2017). Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle. Australasian physical & engineering sciences in medicine, 40(1), 137-144.
  • Banala, S. K., Kim, S. H., Agrawal, S. K., & Scholz, J. P. (2008). Robot assisted gait training with active leg exoskeleton (ALEX). Paper presented at the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.
  • Baskar, H., & Nadaradjane, S. M. R. (2016). Minimization of metabolic cost of muscles based on human exoskeleton modeling: a simulation. Int. J. Biomed. Eng. Sci, 3(4), 9.
  • Bionics, E. (2016). Ekso GT Robotic Exoskeleton cleared by FDA for use with stroke and spinal cord injury patients.
  • Bogue, R. (2015). Robotic exoskeletons: a review of recent progress. Industrial Robot: An International Journal.
  • Brenner, L. (2016). Exploring the psychosocial impact of Ekso Bionics Technology. Archives of Physical Medicine and Rehabilitation, 97(10), e113.
  • Bulea, T. C., Lerner, Z. F., & Damiano, D. L. (2018). Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control. Paper presented at the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
  • Calabrò, R. S., Cacciola, A., Bertè, F., Manuli, A., Leo, A., Bramanti, A., . . . Bramanti, P. (2016). Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurological Sciences, 37(4), 503-514.
  • Cestari, M., Sanz-Merodio, D., Arevalo, J. C., & Garcia, E. (2014). ARES, a variable stiffness actuator with embedded force sensor for the ATLAS exoskeleton. Industrial Robot: An International Journal, 41(6), 518-526.
  • Cha, D., & Kim, K. I. (2018). A lower limb exoskeleton based on recognition of lower limb walking intention. Transactions of the Canadian Society for Mechanical Engineering, 43(1), 102-111.
  • Chen, B., Ma, H., Qin, L.-Y., Gao, F., Chan, K.-M., Law, S.-W., . . . Liao, W.-H. (2016). Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation, 5, 26-37.
  • Chen, B., Ma, H., Qin, L.-Y., Guan, X., Chan, K.-M., Law, S.-W., . . . Liao, W.-H. (2015). Design of a lower extremity exoskeleton for motion assistance in paralyzed individuals. Paper presented at the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Chen, B., Zhao, X., Ma, H., Qin, L., & Liao, W.-H. (2017). Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton. Smart Materials and Structures, 26(10), 105008.
  • Chen, B., Zhong, C.-H., Ma, H., Guan, X., Qin, L.-Y., Chan, K.-M., . . . Liao, W.-H. (2018). Sit-to-stand and stand-to-sit assistance for paraplegic patients with CUHK-EXO exoskeleton. Robotica, 36(4), 535.
  • Chen, B., Zhong, C.-H., Zhao, X., Ma, H., Guan, X., Li, X., . . . Law, S.-W. (2017). A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic Translation, 11, 7-18.
  • Chen, G., Salim, V., & Yu, H. (2015). A novel gait phase-based control strategy for a portable knee-ankle-foot robot. Paper presented at the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR).
  • Chen, G., & Yu, H. (2014). A portable powered knee-ankle-foot orthosis. Journal of Medical Devices, 8(2), 020927. Chinmilli, P., Redkar, S., Zhang, W., & Sugar, T. (2017). A review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons. Int. Robot. Autom. J, 3(7), 00080.
  • Cho, K., Kim, Y., Yi, D., Jung, M., & Lee, K. (2012). Analysis and evaluation of a combined human-exoskeleton model under two different constraints condition. Proceedings of the International Summit on Human Simulation, 23-25.
  • Costa, N., & Caldwell, D. G. (2006). Control of a biomimetic" soft-actuated" 10dof lower body exoskeleton. Paper presented at the The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006.
  • Crea, S., Nann, M., Trigili, E., Cordella, F., Baldoni, A., Badesa, F. J., . . . Aracil, N. G. (2018). Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Scientific reports, 8(1), 10823.
  • Daines, K. Crutch Assisted Sit-to-Stand and Stand-to-Sit with a Powered Exoskeleton.
  • Díez, J. A., Blanco, A., Catalán, J. M., Bertomeu-Motos, A., Badesa, F. J., & García-Aracil, N. (2017). Mechanical design of a novel hand exoskeleton driven by linear actuators. Paper presented at the Iberian Robotics Conference.
  • Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American journal of physical medicine & rehabilitation, 91(11), 911-921.
  • Federici, S., Meloni, F., Bracalenti, M., & De Filippis, M. L. (2015). The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: a systematic review. NeuroRehabilitation, 37(3), 321-340.
  • Ferrari, A., Benedetti, M. G., Pavan, E., Frigo, C., Bettinelli, D., Rabuffetti, M., . . . Leardini, A. (2008). Quantitative comparison of five current protocols in gait analysis. Gait & posture, 28(2), 207-216.
  • Fournier, B. (2018). Model and Characterization of a Passive Biomimetic Ankle for Lower Extremity Powered Exoskeleton. Université d'Ottawa/University of Ottawa.
  • Fournier, B. N., Lemaire, E. D., Smith, A. J., & Doumit, M. (2018). Modeling and simulation of a lower extremity powered exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 26(8), 1596-1603.
  • Fuse, I., Hirano, S., Saitoh, E., Otaka, Y., Shigeo Tanabe, R., Masaki Katoh, R., . . . Tetsuya Tsunoda, M. (2019). Gait reconstruction using the gait assist robot WPAL in patients with cervical spinal cord injury. injury, 10, 88-95.
  • González-Vargas, J., Ibáñez, J., Contreras-Vidal, J. L., Van der Kooij, H., & Pons, J. L. (2016). Wearable Robotics: Challenges and Trends: Proceedings of the 2nd International Symposium on Wearable Robotics, WeRob2016, October 18-21, 2016, Segovia, Spain (Vol. 16): Springer.
  • Grasmücke, D., Cruciger, O., Meindl, R. C., Schildhauer, T. A., & Aach, M. (2017). Experiences in four years of HAL exoskeleton SCI rehabilitation Converging Clinical and Engineering Research on Neurorehabilitation II (pp. 1235-1238): Springer.
  • Gurvinder, B. S. R. A. S., & Virk, S. (2016). Lower Limb Exoskeletons: A Brief Review.
  • Haeberle, H. S., Helm, J. M., Navarro, S. M., Karnuta, J. M., Schaffer, J. L., Callaghan, J. J., . . . Ramkumar, P. N. (2019). Artificial intelligence and machine learning in lower extremity arthroplasty: a review. The Journal of arthroplasty.
  • Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., . . . Farris, R. (2015). Mobility outcomes following five training sessions with a powered exoskeleton. Topics in spinal cord injury rehabilitation, 21(2), 93-99.
  • Hussain, S., Jamwal, P. K., & Ghayesh, M. H. (2017). Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Computer methods in biomechanics and biomedical engineering, 20(6), 626-635.
  • Huysamen, K., Nugent, R., & O’Sullivan, L. BIOMECHANICAL AND PHYSIOLOGICAL ANALYSIS OF AN EXOSKELETON FOR MANUAL HANDLING. Irish Ergonomics Society, 16.
  • Jin, X. (2018). A Novel Design of a Cable-driven Active Leg Exoskeleton (C-ALEX) and Gait Training with Human Subjects: Columbia University.
  • Jin, X., Cai, Y., Prado, A., & Agrawal, S. K. (2017). Effects of exoskeleton weight and inertia on human walking. Paper presented at the 2017 IEEE International Conference on Robotics and Automation (ICRA).
  • Khamar, M., Edrisi, M., & Zahiri, M. (2019). Human-exoskeleton control simulation, kinetic and kinematic modeling and parameters extraction. MethodsX, 6, 1838-1846.
  • Kim, J.-H., Shim, M., Ahn, D. H., Son, B. J., Kim, S.-Y., Kim, D. Y., . . . Cho, B.-K. (2015). Design of a knee exoskeleton using foot pressure and knee torque sensors. International Journal of Advanced Robotic Systems, 12(8), 112.
  • Kim, W., Kim, H., Lim, D., Moon, H., & Han, C. (2017). Design and kinematic analysis of the hanyang exoskeleton assistive robot (HEXAR) for human synchronized motion Wearable Robotics: Challenges and Trends (pp. 275-279): Springer.
  • Kirsch, N., Alibeji, N., Dicianno, B. E., & Sharma, N. (2016). Switching control of functional electrical stimulation and motor assist for muscle fatigue compensation. Paper presented at the 2016 American Control Conference (ACC).
  • Lajeunesse, V., Routhier, F., Vincent, C., Lettre, J., & Michaud, F. (2018). Perspectives of individuals with incomplete spinal cord injury concerning the usability of lower limb exoskeletons: an exploratory study. Technology and Disability, 30(1-2), 63-76.
  • Li, J., Zuo, S., Xu, C., Zhang, L., Dong, M., Tao, C., & Ji, R. (2019). Influence of a Compatible Design on Physical Human-Robot Interaction Force: a Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. Journal of Intelligent & Robotic Systems, 1-14.
  • Li, N., Yan, L., Qian, H., Wu, H., Wu, J., & Men, S. (2015). Review on lower extremity exoskeleton robot. The Open Automation and Control Systems Journal, 7(1).
  • Li, Y., Li, Z., Penzlin, B., Tang, Z., Liu, Y., Guan, X., . . . Leonhardt, S. (2019). Design of the clutched variable parallel elastic actuator (CVPEA) for lower limb exoskeletons. Paper presented at the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
  • Liang, F.-Y., Zhong, C.-H., Zhao, X., Castro, D. L., Chen, B., Gao, F., & Liao, W.-H. (2018). Online adaptive and lstm-based trajectory generation of lower limb exoskeletons for stroke rehabilitation. Paper presented at the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Ling, W., Yu, G., & Li, Z. (2019). Lower Limb Exercise Rehabilitation Assessment Based on Artificial Intelligence and Medical Big Data. IEEE Access, 7, 126787-126798.
  • Louie, D. R., Eng, J. J., & Lam, T. (2015). Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of neuroengineering and rehabilitation, 12(1), 82.
  • Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., & Xie, S. S. (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132-145.
  • Michaud, B., Cherni, Y., Begon, M., Girardin-Vignola, G., & Roussel, P. (2017). A serious game for gait rehabilitation with the Lokomat. Paper presented at the 2017 International Conference on Virtual Rehabilitation (ICVR).
  • Mironov, V. I., Kastalskiy, I., Lobov, S., & Kazantsev, V. B. (2017). A Biofeedback Control System of the Exoskeleton Trainer for Lower Limbs Motor Function Recovery. Paper presented at the NEUROTECHNIX.
  • Mortensen, J., & Merryweather, A. (2018). Using OpenSim to Investigate the Effect of Active Muscles and Compliant Flooring on Head Injury Risk. Paper presented at the Congress of the International Ergonomics Association.
  • Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Al Mahmud, A. (2019). Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients’ Rehabilitation: Systematic Review. JMIR rehabilitation and assistive technologies, 6(2), e12010.
  • Murray, S., & Goldfarb, M. (2012). Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. Paper presented at the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
  • Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J.-W., Lee, H. J., & Yoo, A. (2017). Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Journal of neuroengineering and rehabilitation, 14(1), 24.
  • Neuhaus, P. D., Noorden, J. H., Craig, T. J., Torres, T., Kirschbaum, J., & Pratt, J. E. (2011). Design and evaluation of Mina: A robotic orthosis for paraplegics. Paper presented at the 2011 IEEE international conference on rehabilitation robotics. O'Sullivan, S. B., Schmitz, T. J., & Fulk, G. (2019). Physical rehabilitation: FA Davis.
  • Önen, Ü., Botsalı, F. M., Kalyoncu, M., Şahin, Y., & Tınkır, M. (2017). Design and Motion Control of a Lower Limb Robotic Exoskeleton. Mechatronic Systems in Engineering: Design, Control and Applications of, 135.
  • Ortlieb, A., Bouri, M., & Bleuler, H. (2017). AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases Wearable Robotics: Challenges and Trends (pp. 439-443): Springer.
  • Park, J.-H., Lee, J.-S., Shin, J.-S., & Cho, B.-K. (2015). Design of a lower limb exoskeleton including roll actuation to assist walking and standing up. Paper presented at the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).
  • Poberznik, A. (2018). Therapeutic use of exoskeletons in spinal cord injury gait rehabilitation-a systematic literature review.
  • Raab, K., Krakow, K., Tripp, F., & Jung, M. (2016). Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal cord series and cases, 2, 15025.
  • RANJITHA, K. (2019). Hiking Aid for Rewalk. Paper presented at the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS).
  • Ren, Z., Deng, C., Zhao, K., & Li, Z. (2018). The development of a high-speed lower-limb robotic exoskeleton. Science China Information Sciences, 62(5), 50202.
  • Riener, R. (2016). Technology of the robotic gait orthosis Lokomat Neurorehabilitation Technology (pp. 395-407): Springer.
  • Roer, R., Abehsera, S., & Sagi, A. (2015). Exoskeletons across the Pancrustacea: comparative morphology, physiology, biochemistry and genetics. Integrative and comparative biology, 55(5), 771-791.
  • Rupal, B., Singla, A., & Virk, G. (2016). Lower limb exoskeletons: a brief review. Paper presented at the Conference on mechanical engineering and technology (COMET-2016), IIT (BHU), Varanasi, India.
  • Sanz-Merodio, D., Cestari, M., Arevalo, J. C., & Garcia, E. (2012). A lower-limb exoskeleton for gait assistance in quadriplegia. Paper presented at the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).
  • Sapiee, M., Marhaban, M., Ishak, A., & Miskon, M. (2018). An approach to data utilization of the lokomat rehabilitation robot. International Journal of Human and Technology Interaction (IJHaTI), 2(1), 51-56.
  • Shah, B., Mascarenhas, E., Menon, S., & Mengle, S. (2019). Exoskeleton for Support And Strength Enhancement.
  • Sirlantzis, K., Larsen, L. B., Kanumuru, L. K., & Oprea, P. (2019). Robotics Handbook of Electronic Assistive Technology (pp. 311-345): Elsevier.
  • Skantze, G., & Johansson, M. (2015). Modelling situated human-robot interaction using IrisTK. Paper presented at the Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
  • Valente, G., Crimi, G., Vanella, N., Schileo, E., & Taddei, F. (2017). nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim. Computer methods and programs in biomedicine, 152, 85-92.
  • van Hedel, H. J., & Aurich, T. (2016). Clinical application of rehabilitation technologies in children undergoing neurorehabilitation Neurorehabilitation Technology (pp. 283-308): Springer.
  • Virk, G. S., Haider, U., Nyoman, I., Masud, N., Mamaev, I., Hopfgarten, P., & Hein, B. (2016). Design of EXO-LEGS exoskeletons. Paper presented at the ASSISTIVE ROBOTICS: Proceedings of the 18th International Conference on CLAWAR 2015.
  • Wallard, L., Dietrich, G., Kerlirzin, Y., & Bredin, J. (2015). Effects of robotic gait rehabilitation on biomechanical parameters in the chronic hemiplegic patients. Neurophysiologie Clinique/Clinical Neurophysiology, 45(3), 215-219.
  • Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., . . . Molinari, M. (2014). Design and control of the MINDWALKER exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 23(2), 277-286.
  • Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., . . . Molinari, M. (2015). Design and control of the MINDWALKER exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 23(2), 277-286.
  • Weerasingha, A., Withanage, W., Pragnathilaka, A., Ranaweera, R., & Gopura, R. (2018). Powered ankle exoskeletons: existent designs and control systems. Paper presented at the in IEEE Int. Conf. on Artific. Life and Robot.
  • Wu, Y., Zhu, A., Shen, H., Shen, Z., Zhang, X., & Cao, G. (2019). Biomechanical simulation analysis of human lower limbs assisted by exoskeleton. Paper presented at the 2019 16th International Conference on Ubiquitous Robots (UR).
  • Xinyi, Z., Haoping, W., Yang, T., Zefeng, W., & Laurent, P. (2015). Modeling, simulation & control of human lower extremity exoskeleton. Paper presented at the 2015 34th Chinese Control Conference (CCC).
  • Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64, 120-136.
  • Yatsuya, K., Hirano, S., Saitoh, E., Tanabe, S., Tanaka, H., Eguchi, M., . . . Kagaya, H. (2018). Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO). The journal of spinal cord medicine, 41(1), 48-54.
  • Yeem, S., Heo, J., Kim, H., & Kwon, Y. (2018). Technical analysis of exoskeleton robot. World Journal of Engineering and Technology, 7(1), 68-79.
  • Yeung, L.-F., & Tong, R. K.-Y. (2018). Lower Limb Exoskeleton Robot to Facilitate the Gait of Stroke Patients. Wearable Technology in Medicine and Health Care, 91.
  • Yue, C., Lin, X., Zhang, X., Qiu, J., & Cheng, H. (2018). Design and performance evaluation of a wearable sensing system for lower-limb exoskeleton. Applied bionics and biomechanics, 2018.
  • Zhang, G., Liu, G., Ma, S., Wang, T., Zhao, J., & Zhu, Y. (2017). Biomechanical design of escalading lower limb exoskeleton with novel linkage joints. Technology and Health Care, 25(S1), 267-273.
  • Zhou, L., Bai, S., Andersen, M. S., & Rasmussen, J. (2015). Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity.
  • Zhou, L., Li, Y., & Bai, S. (2017). A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation. Robotics and Autonomous Systems, 91, 337-347.
  • Zoss, A., Kazerooni, H., & Chu, A. (2005). On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). Paper presented at the 2005 IEEE/RSJ international conference on intelligent robots and systems.
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derlemeler
Yazarlar

İsmail Çalıkuşu 0000-0002-6640-7917

Esma Uzunhisarcıklı 0000-0003-2821-4177

Mehmet Bahadır Çetinkaya 0000-0003-3378-4561

Ugur Fidan 0000-0003-0356-017X

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 11 Eylül 2020
Kabul Tarihi 13 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 2

Kaynak Göster

APA Çalıkuşu, İ., Uzunhisarcıklı, E., Çetinkaya, M. B., Fidan, U. (2020). Robotic Design and Modelling of Medical Lower Extremity Exoskeletons. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi, 1(2), 198-214.
AMA Çalıkuşu İ, Uzunhisarcıklı E, Çetinkaya MB, Fidan U. Robotic Design and Modelling of Medical Lower Extremity Exoskeletons. imctd. Aralık 2020;1(2):198-214.
Chicago Çalıkuşu, İsmail, Esma Uzunhisarcıklı, Mehmet Bahadır Çetinkaya, ve Ugur Fidan. “Robotic Design and Modelling of Medical Lower Extremity Exoskeletons”. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi 1, sy. 2 (Aralık 2020): 198-214.
EndNote Çalıkuşu İ, Uzunhisarcıklı E, Çetinkaya MB, Fidan U (01 Aralık 2020) Robotic Design and Modelling of Medical Lower Extremity Exoskeletons. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi 1 2 198–214.
IEEE İ. Çalıkuşu, E. Uzunhisarcıklı, M. B. Çetinkaya, ve U. Fidan, “Robotic Design and Modelling of Medical Lower Extremity Exoskeletons”, imctd, c. 1, sy. 2, ss. 198–214, 2020.
ISNAD Çalıkuşu, İsmail vd. “Robotic Design and Modelling of Medical Lower Extremity Exoskeletons”. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi 1/2 (Aralık 2020), 198-214.
JAMA Çalıkuşu İ, Uzunhisarcıklı E, Çetinkaya MB, Fidan U. Robotic Design and Modelling of Medical Lower Extremity Exoskeletons. imctd. 2020;1:198–214.
MLA Çalıkuşu, İsmail vd. “Robotic Design and Modelling of Medical Lower Extremity Exoskeletons”. İleri Mühendislik Çalışmaları Ve Teknolojileri Dergisi, c. 1, sy. 2, 2020, ss. 198-14.
Vancouver Çalıkuşu İ, Uzunhisarcıklı E, Çetinkaya MB, Fidan U. Robotic Design and Modelling of Medical Lower Extremity Exoskeletons. imctd. 2020;1(2):198-214.