Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPUTATIONAL EVALUATION OF GINSENOSIDES AS ALTERNATIVE THERAPEUTIC AGENTS TARGETING THE BREAST CANCER-ASSOCIATED BARD1 GENE: MOLECULAR DOCKING AND ARTIFICIAL INTELLIGENCE APPROACHES

Yıl 2025, Cilt: 1 Sayı: 2, 36 - 44, 29.09.2025

Öz

Breast cancer associated with the BARD1 gene occurs when the cell cycle in breast tissue becomes abnormal and proliferates uncontrollably. The increasing incidence of breast cancer, particularly in recent years, has become a significant public health concern. This study investigates the potential of ginsenosides derived from the Panax ginseng plant, known for their anticancer bioactive properties, as alternative drug candidates to chemical synthetic agents in breast cancer treatment. Within the scope of the study, the crystal structure of the BARD1 gene (PDB ID: 3C5R) receptor, along with Ginsenoside Rk1, Ginsenoside Ro, Pseudoginsenoside Rt5, and Vinaginsenoside R3 ginsenosides, as well as the reference drugs 5-Fluorouracil (5FU), Carboplatin, Docetaxel, and Ixabeliplane, were subjected to molecular docking to evaluate their potential anticancer bioactive activities and binding affinities to the BARD1 receptor. An artificial intelligence-based model was developed to optimize the binding energy between the receptor and the ligands in question, and the docking process was repeated to select the best receptor-ligand complex. The most promising potential drug candidate among the receptor-ligand complexes was identified, and its pharmacokinetic properties were evaluated using ADMET analyses. According to the findings, while Docetaxel (-9.5 kcal/mol) exhibited the highest binding affinity among chemical agents, natural ginsenosides such as Ginsenoside Ro (-9.5 kcal/mol) and Ginsenoside Rk1 (-9.0 kcal/mol) demonstrated binding affinities comparable to the reference ligands. Based on artificial intelligence-based molecular docking binding energy predictions, the receptor-ligand complexes formed with Ginsenoside Ro (-8.54 kcal/mol) and Carboplatin (-9.82 kcal/mol) achieved the best scores. The results of this study indicate that Panax ginseng-derived ginsenosides exhibit binding energies similar to those of chemical compounds against the BARD1 gene receptor associated with breast cancer. These findings are highly promising for preclinical studies, supporting the potential evaluation of ginsenosides as natural alternatives in breast cancer treatment.

Kaynakça

  • [1] R. Schmitz, A. W. van den Belt-Dusebout, K. Clements, Y. Ren, C. Cresta, J. Timbres, et al., "Association of DCIS size and margin status with risk of developing breast cancer post-treatment: multinational, pooled cohort study," BMJ, vol. 383, p. e076022, Oct 30 2023, doi//:10.1136/bmj-2023-076022.
  • [2] C. Breast Cancer Association, L. Dorling, S. Carvalho, J. Allen, A. Gonzalez-Neira, C. Luccarini, et al., "Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women," N Engl J Med, vol. 384, pp. 428-439, Feb 4 2021, doi//:10.1056/NEJMoa1913948.
  • [3] Y. M. Hawsawi and A. Shams, "The Fundamental Role of BARD1 Mutations and Their Applications as a Prognostic Biomarker for Cancer Treatment," in BRCA1 and BRCA2 Mutations - Diagnostic and Therapeutic Implications, ed, 2023.
  • [4] M. Wang, W. Li, N. Tomimatsu, C. H. Yu, J. H. Ji, S. Alejo, et al., "Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair," Mol Cell, vol. 83, pp. 3679-3691 e8, Oct 19 2023, doi//:10.1016/j.molcel.2023.09.015.
  • [5] P. Chatterjee, R. Karn, I. A. Emerson, and S. Banerjee, "Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor," Mol Biotechnol, Feb 3 2023, doi//:10.1007/s12033-023-00680-8.
  • [6] P. Chatterjee, R. Karn, I. A. Emerson, and S. Banerjee, "Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor," Mol Biotechnol, vol. 66, pp. 718-736, Apr 2024, doi//:10.1007/s12033-023-00680-8.
  • [7] G. D. Rajesh, K. Apte, P. V. Abhirami, S. Anusha, A. Ranjitha, S. B. Kumar, et al., "Comprehensive In Silico Analysis of Flavonoids in Breast Cancer Using Molecular Docking, ADME, and Molecular Dynamics Simulation Approach," Peptide Science, vol. 117, 2025, doi//:10.1002/pep2.24391.
  • [8] T. K. Nguyen, T. N. L. Nguyen, K. Nguyen, H. V. T. Nguyen, L. T. T. Tran, T. X. T. Ngo, et al., "Machine learning-based screening of MCF-7 human breast cancer cells and molecular docking analysis of essential oils from Ocimum basilicum against breast cancer," Journal of Molecular Structure, vol. 1268, 2022, doi//:10.1016/j.molstruc.2022.133627.
  • [9] Z. A. Martinez, R. M. Murray, and M. W. Thomson, "Trill: Orchestrating Modular Deep-Learning Workflows for Democratized, Scalable Protein Analysis and Engineering," bioRxiv, Nov 10 2023, doi//:10.1101/2023.10.24.563881.
  • [10] Anuradha and N. Bharadvaja, "Exploring different computational approaches for effective diagnosis of breast cancer," Prog Biophys Mol Biol, vol. 177, pp. 141-150, Jan 2023, doi//:10.1016/j.pbiomolbio.2022.11.004.
  • [11] S. Pandiyan and L. Wang, "A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence," Comput Biol Med, vol. 150, p. 106140, Nov 2022, doi//:10.1016/j.compbiomed.2022.106140.
  • [12] S. Raschka and B. Kaufman, "Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition," Methods, vol. 180, pp. 89-110, Aug 1 2020, doi//:10.1016/j.ymeth.2020.06.016.
  • [13] A. Hagg and K. N. Kirschner, "Open-Source Machine Learning in Computational Chemistry," J Chem Inf Model, vol. 63, pp. 4505-4532, Aug 14 2023, doi//:10.1021/acs.jcim.3c00643.
  • [14] P. Moingeon, M. Kuenemann, and M. Guedj, "Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine," Drug Discov Today, vol. 27, pp. 215-222, Jan 2022, doi//:10.1016/j.drudis.2021.09.006.
  • [15] Y. Yang, Y. Nan, Y. Du, W. Liu, N. Ning, G. Chen, et al., "Ginsenosides in cancer: Proliferation, metastasis, and drug resistance," Biomed Pharmacother, vol. 177, p. 117049, Aug 2024, doi//:10.1016/j.biopha.2024.117049.
  • [16] Y. Wan, J. Wang, J. F. Xu, F. Tang, L. Chen, Y. Z. Tan, et al., "Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects," J Ginseng Res, vol. 45, pp. 617-630, Nov 2021, doi//:10.1016/j.jgr.2021.03.001.
  • [17] R. Jain, A. Kumar, A. Sharma, R. K. Sahoo, A. Sharma, A. Seth, et al., "Carboplatin in Patients With Metastatic Castration-Resistant Prostate Cancer Harboring Somatic or Germline Homologous Recombination Repair Gene Mutations: Phase II Single-Arm Trial," JMIR Res Protoc, vol. 13, p. e54086, Apr 18 2024, doi//:10.2196/54086.
  • [18] G. Heinzelmann and M. K. Gilson, "Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation," Sci Rep, vol. 11, p. 1116, Jan 13 2021, doi//:10.1038/s41598-020-80769-1.
  • [19] C. J. Morris and D. D. Corte, "Using molecular docking and molecular dynamics to investigate protein-ligand interactions," Modern Physics Letters B, vol. 35, 2021, doi//:10.1142/s0217984921300027.
  • [20] Y. Zhang, S. Forli, A. Omelchenko, and M. F. Sanner, "AutoGridFR: Improvements on AutoDock Affinity Maps and Associated Software Tools," J Comput Chem, vol. 40, pp. 2882-2886, Dec 15 2019, doi//:10.1002/jcc.26054.
  • [21] G. Bitencourt-Ferreira and W. F. de Azevedo Junior, "Electrostatic Potential Energy in Protein-Drug Complexes," Curr Med Chem, vol. 28, pp. 4954-4971, 2021, doi//:10.2174/0929867328666210201150842.
  • [22] H. C. A. Souza, M. D. A. Souza, C. S. Sousa, E. K. A. Viana, S. K. S. Alves, A. O. Marques, et al., "Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2," Adv Respir Med, vol. 91, pp. 464-485, Oct 27 2023, doi//:10.3390/arm91060035.
  • [23] G. Colab. Google Colaboratory. Available: https://colab.research.google.com/
  • [24] T. Chen, X. Shu, H. Zhou, F. A. Beckford, and M. Misir, "Algorithm selection for protein-ligand docking: strategies and analysis on ACE," Sci Rep, vol. 13, p. 8219, May 22 2023, doi//:10.1038/s41598-023-35132-5.
  • [25] E. Akbaba and D. KarataŞ, "Phytochemicals of Hibiscus sabdariffa with Therapeutic Potential against SARS-CoV-2: A Molecular Docking Study," Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 13, pp. 872-888, 2023, doi//:10.21597/jist.1187616.
  • [26] M. A. A. Ibrahim, E. A. A. Badr, A. H. M. Abdelrahman, N. M. Almansour, G. A. H. Mekhemer, A. M. Shawky, et al., "In Silico Targeting Human Multidrug Transporter ABCG2 in Breast Cancer: Database Screening, Molecular Docking, and Molecular Dynamics Study," Mol Inform, vol. 41, p. e2060039, Feb 2022, doi//:10.1002/minf.202060039.
  • [27] Y. Yi, K. Shi, S. Ding, J. Hu, C. Zhang, J. Mei, et al., "A general strategy for protein affinity-ligand oriented-immobilization and screening for bioactive compounds," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 1218, p. 123591, Mar 1 2023, doi//:10.1016/j.jchromb.2023.123591.
  • [28] S. Gu, C. Shen, J. Yu, H. Zhao, H. Liu, L. Liu, et al., "Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?," Brief Bioinform, vol. 24, Mar 19 2023, doi//:10.1093/bib/bbad008.
  • [29] J. Jimenez-Luna, F. Grisoni, N. Weskamp, and G. Schneider, "Artificial intelligence in drug discovery: recent advances and future perspectives," Expert Opin Drug Discov, vol. 16, pp. 949-959, Sep 2021, doi//:10.1080/17460441.2021.1909567.
  • [30] M. Khanal, A. Acharya, R. Maharjan, K. Gyawali, R. Adhikari, D. D. Mulmi, et al., "Identification of potent inhibitors of HDAC2 from herbal products for the treatment of colon cancer: Molecular docking, molecular dynamics simulation, MM/GBSA calculations, DFT studies, and pharmacokinetic analysis," PLoS One, vol. 19, p. e0307501, 2024, doi//:10.1371/journal.pone.0307501.
  • [31] Y. Tong, X. Song, Y. Zhang, Y. Xu, and Q. Liu, "Insight on structural modification, biological activity, structure-activity relationship of PPD-type ginsenoside derivatives," Fitoterapia, vol. 158, p. 105135, Apr 2022, doi//:10.1016/j.fitote.2022.105135.
  • [32] X. Y. Gao, G. C. Liu, J. X. Zhang, L. H. Wang, C. Xu, Z. A. Yan, et al., "Pharmacological Properties of Ginsenoside Re," Front Pharmacol, vol. 13, p. 754191, 2022, doi//:10.3389/fphar.2022.754191.
  • [33] T. Zhang, S. Zhong, L. Hou, Y. Wang, X. Xing, T. Guan, et al., "Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol," J Ginseng Res, vol. 44, pp. 690-696, Sep 2020, doi//:10.1016/j.jgr.2018.05.001.
  • [34] S. Liu, Z. Ai, Y. Hu, G. Ren, J. Zhang, P. Tang, et al., "Ginseng glucosyl oleanolate inhibit cervical cancer cell proliferation and angiogenesis via PI3K/AKT/HIF-1alpha pathway," NPJ Sci Food, vol. 8, p. 105, Dec 19 2024, doi//:10.1038/s41538-024-00341-3.
  • [35] M. Sniadecki, M. Brzezinski, K. Darecka, D. Klasa-Mazurkiewicz, P. Poniewierza, M. Krzeszowiec, et al., "BARD1 and Breast Cancer: The Possibility of Creating Screening Tests and New Preventive and Therapeutic Pathways for Predisposed Women," Genes (Basel), vol. 11, Oct 24 2020, doi//:10.3390/genes11111251.
  • [36] A. S, M. Imran P K, K. MohİDeen A, S. Meeran I, and S. T. K, "Computational analysis using ADMET profiling, DFT calculations and molecular docking of two anti-cancer drugs," Turkish Computational and Theoretical Chemistry, vol. 7, pp. 37-50, 2023, doi//:10.33435/tcandtc.1102295.
  • [37] J. Yang, K. He, M. Zhang, L. Wu, S. Qin, M. Luo, et al., "Unveiling the therapeutic potential of epigallocatechin gallate in liver cancer: insights from network pharmacology and in vitro assays," Nat Prod Res, pp. 1-5, Aug 2 2024, doi//:10.1080/14786419.2024.2384083.
  • [38] A. C. J. de Araujo, P. R. Freitas, I. M. Araujo, G. M. Siqueira, J. A. de Oliveira Borges, D. S. Alves, et al., "Potentiating-antibiotic activity and absorption, distribution, metabolism, excretion and toxicity properties (ADMET) analysis of synthetic thiadiazines against multi-drug resistant (MDR) strains," Fundam Clin Pharmacol, vol. 38, pp. 84-98, Feb 2024, doi//:10.1111/fcp.12950.
  • [39] S. Akash, F. I. Aovi, M. A. K. Azad, A. Kumer, U. Chakma, M. R. Islam, et al., "A drug design strategy based on molecular docking and molecular dynamics simulations applied to development of inhibitor against triple-negative breast cancer by Scutellarein derivatives," PLoS One, vol. 18, p. e0283271, 2023, doi//:10.1371/journal.pone.0283271.
  • [40] T. L. Sestic, J. J. Ajdukovic, M. A. Marinovic, E. T. Petri, and M. P. Savic, "In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects," Steroids, vol. 189, p. 109147, Jan 2023, doi//:10.1016/j.steroids.2022.109147.
  • [41] D. Patel, N. Sethi, P. Patel, S. Shah, and K. Patel, "Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review," Eur J Pharm Biopharm, vol. 198, p. 114267, May 2024, doi//:10.1016/j.ejpb.2024.114267.
  • [42] S. Yalcin, "Molecular Docking, Drug Likeness, and ADMET Analyses of Passiflora Compounds as P-Glycoprotein (P-gp) Inhibitor for the Treatment of Cancer," Current Pharmacology Reports, vol. 6, pp. 429-440, 2020, doi//:10.1007/s40495-020-00241-6.
  • [43] X. Li, L. Tang, Z. Li, D. Qiu, Z. Yang, and B. Li, "Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms," Molecules, vol. 28, Mar 2 2023, doi//:10.3390/molecules28052326.
  • [44] P. Chunarkar-Patil, M. Kaleem, R. Mishra, S. Ray, A. Ahmad, D. Verma, et al., "Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies," Biomedicines, vol. 12, Jan 16 2024, doi//:10.3390/biomedicines12010201

MEME KANSERİ İLE İLİŞKİLİ BARD1 GENİ İÇİN ALTERNATİF TERAPÖTİK AJANLAR OLARAK GİNSENOSİDLERİN HESAPLAMALI DEĞERLENDİRİLMESİ: MOLEKÜLER DOCKİNG VE YAPAY ZEKA YAKLAŞIMLARI

Yıl 2025, Cilt: 1 Sayı: 2, 36 - 44, 29.09.2025

Öz

BARD1 geni ile ilişkilendirilen meme kanseri, meme dokusunda bulunan hücre döngüsünün anormalleşerek kontrolsüz çoğalması ile meydana gelmektedir. Özellikle son yıllarda meme kanseri vakalarının artması ciddi bir sağlık sorunu haline gelmiştir. Çalışma da Panax ginseng bitkisinden elde edilen antikanser biyoaktif özelliğine sahip ginsenosid türevlerinin meme kanseri tedavisinde kimyasal sentetik ajanlara alternatif bir ilaç adayı olma potansiyeli incelenmiştir. Çalışma kapsamında BARD1 genine ait kristal yapı (PDB ID: 3C5R) reseptörü ile Ginsenoside Rk1, Ginsenoside Ro, Pseudoginsenoside Rt5, Vinaginsenoside R3 ginsenosidleri ve referans ilaç olarak seçilen 5-Fluorouracil (5FU), Carboplatin, Docetaxel ve Ixabeliplane bileşiklerin potansiyel antikanser biyoaktif ajan olarak etkinliklerini ve BARD1 reseptörüne karşı bağlanma güçlerini belirlemek adına moleküler docking işlemine tabi tutulmuştur. Söz konusu reseptör ve ligandların arasındaki bağlanma enerjisinin optimizasyonu adına yapay zeka tabanlı bir model geliştirilerek docking işlemi tekrarlanarak en iyi reseptör-ligand kompleksi seçilmiştir. Reseptör-ligand komplekslerine ait en iyi potansiyel ilaç adayını belirlemek ve farmakokinetik özellikleri ADMET analizleri ile değerlendirilmiştir. Elde edilen bulgulara göre kimyasal ajanlardan en iyi sonucu Docetaxel (-9.5 kcal/mol) verirken Ginsenoside Ro (-9.5 kcal/mol), Ginsenoside Rk1 (-9.0 kcal/mol) gibi doğal ginsenosidler referans ligandlar ile oldukça yakın sonuçlat göstermiştir. Yapay zeka tabanlı moleküler docking bağlanma enerjilerine göre ise Ginsenoside Ro (-8.54 kcal/mol) ve Carboplatin (-9.82 kcal/mol) ile oluşturulan reseptör-ligand kompleksi en iyi skoru vermiştir. Çalışmamızın sonuçlarına göre belirlenen Panax ginseng türevi ginsenosidler meme kanseri ile ilişkili BARD1 genine ait reseptöre karşı kimyasal bileşenlere benzer bir şekilde olddukça iyi bir bağlanma enerjisi göstermiştir. Bu bulguşar ginsenosidlerin meme kanserine yönelik tedavide doğal bir alternatif olarak değerlenririlerek preklinik çalışmalar için oldukça umut vericidir.

Kaynakça

  • [1] R. Schmitz, A. W. van den Belt-Dusebout, K. Clements, Y. Ren, C. Cresta, J. Timbres, et al., "Association of DCIS size and margin status with risk of developing breast cancer post-treatment: multinational, pooled cohort study," BMJ, vol. 383, p. e076022, Oct 30 2023, doi//:10.1136/bmj-2023-076022.
  • [2] C. Breast Cancer Association, L. Dorling, S. Carvalho, J. Allen, A. Gonzalez-Neira, C. Luccarini, et al., "Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women," N Engl J Med, vol. 384, pp. 428-439, Feb 4 2021, doi//:10.1056/NEJMoa1913948.
  • [3] Y. M. Hawsawi and A. Shams, "The Fundamental Role of BARD1 Mutations and Their Applications as a Prognostic Biomarker for Cancer Treatment," in BRCA1 and BRCA2 Mutations - Diagnostic and Therapeutic Implications, ed, 2023.
  • [4] M. Wang, W. Li, N. Tomimatsu, C. H. Yu, J. H. Ji, S. Alejo, et al., "Crucial roles of the BRCA1-BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair," Mol Cell, vol. 83, pp. 3679-3691 e8, Oct 19 2023, doi//:10.1016/j.molcel.2023.09.015.
  • [5] P. Chatterjee, R. Karn, I. A. Emerson, and S. Banerjee, "Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor," Mol Biotechnol, Feb 3 2023, doi//:10.1007/s12033-023-00680-8.
  • [6] P. Chatterjee, R. Karn, I. A. Emerson, and S. Banerjee, "Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor," Mol Biotechnol, vol. 66, pp. 718-736, Apr 2024, doi//:10.1007/s12033-023-00680-8.
  • [7] G. D. Rajesh, K. Apte, P. V. Abhirami, S. Anusha, A. Ranjitha, S. B. Kumar, et al., "Comprehensive In Silico Analysis of Flavonoids in Breast Cancer Using Molecular Docking, ADME, and Molecular Dynamics Simulation Approach," Peptide Science, vol. 117, 2025, doi//:10.1002/pep2.24391.
  • [8] T. K. Nguyen, T. N. L. Nguyen, K. Nguyen, H. V. T. Nguyen, L. T. T. Tran, T. X. T. Ngo, et al., "Machine learning-based screening of MCF-7 human breast cancer cells and molecular docking analysis of essential oils from Ocimum basilicum against breast cancer," Journal of Molecular Structure, vol. 1268, 2022, doi//:10.1016/j.molstruc.2022.133627.
  • [9] Z. A. Martinez, R. M. Murray, and M. W. Thomson, "Trill: Orchestrating Modular Deep-Learning Workflows for Democratized, Scalable Protein Analysis and Engineering," bioRxiv, Nov 10 2023, doi//:10.1101/2023.10.24.563881.
  • [10] Anuradha and N. Bharadvaja, "Exploring different computational approaches for effective diagnosis of breast cancer," Prog Biophys Mol Biol, vol. 177, pp. 141-150, Jan 2023, doi//:10.1016/j.pbiomolbio.2022.11.004.
  • [11] S. Pandiyan and L. Wang, "A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence," Comput Biol Med, vol. 150, p. 106140, Nov 2022, doi//:10.1016/j.compbiomed.2022.106140.
  • [12] S. Raschka and B. Kaufman, "Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition," Methods, vol. 180, pp. 89-110, Aug 1 2020, doi//:10.1016/j.ymeth.2020.06.016.
  • [13] A. Hagg and K. N. Kirschner, "Open-Source Machine Learning in Computational Chemistry," J Chem Inf Model, vol. 63, pp. 4505-4532, Aug 14 2023, doi//:10.1021/acs.jcim.3c00643.
  • [14] P. Moingeon, M. Kuenemann, and M. Guedj, "Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine," Drug Discov Today, vol. 27, pp. 215-222, Jan 2022, doi//:10.1016/j.drudis.2021.09.006.
  • [15] Y. Yang, Y. Nan, Y. Du, W. Liu, N. Ning, G. Chen, et al., "Ginsenosides in cancer: Proliferation, metastasis, and drug resistance," Biomed Pharmacother, vol. 177, p. 117049, Aug 2024, doi//:10.1016/j.biopha.2024.117049.
  • [16] Y. Wan, J. Wang, J. F. Xu, F. Tang, L. Chen, Y. Z. Tan, et al., "Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects," J Ginseng Res, vol. 45, pp. 617-630, Nov 2021, doi//:10.1016/j.jgr.2021.03.001.
  • [17] R. Jain, A. Kumar, A. Sharma, R. K. Sahoo, A. Sharma, A. Seth, et al., "Carboplatin in Patients With Metastatic Castration-Resistant Prostate Cancer Harboring Somatic or Germline Homologous Recombination Repair Gene Mutations: Phase II Single-Arm Trial," JMIR Res Protoc, vol. 13, p. e54086, Apr 18 2024, doi//:10.2196/54086.
  • [18] G. Heinzelmann and M. K. Gilson, "Automation of absolute protein-ligand binding free energy calculations for docking refinement and compound evaluation," Sci Rep, vol. 11, p. 1116, Jan 13 2021, doi//:10.1038/s41598-020-80769-1.
  • [19] C. J. Morris and D. D. Corte, "Using molecular docking and molecular dynamics to investigate protein-ligand interactions," Modern Physics Letters B, vol. 35, 2021, doi//:10.1142/s0217984921300027.
  • [20] Y. Zhang, S. Forli, A. Omelchenko, and M. F. Sanner, "AutoGridFR: Improvements on AutoDock Affinity Maps and Associated Software Tools," J Comput Chem, vol. 40, pp. 2882-2886, Dec 15 2019, doi//:10.1002/jcc.26054.
  • [21] G. Bitencourt-Ferreira and W. F. de Azevedo Junior, "Electrostatic Potential Energy in Protein-Drug Complexes," Curr Med Chem, vol. 28, pp. 4954-4971, 2021, doi//:10.2174/0929867328666210201150842.
  • [22] H. C. A. Souza, M. D. A. Souza, C. S. Sousa, E. K. A. Viana, S. K. S. Alves, A. O. Marques, et al., "Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2," Adv Respir Med, vol. 91, pp. 464-485, Oct 27 2023, doi//:10.3390/arm91060035.
  • [23] G. Colab. Google Colaboratory. Available: https://colab.research.google.com/
  • [24] T. Chen, X. Shu, H. Zhou, F. A. Beckford, and M. Misir, "Algorithm selection for protein-ligand docking: strategies and analysis on ACE," Sci Rep, vol. 13, p. 8219, May 22 2023, doi//:10.1038/s41598-023-35132-5.
  • [25] E. Akbaba and D. KarataŞ, "Phytochemicals of Hibiscus sabdariffa with Therapeutic Potential against SARS-CoV-2: A Molecular Docking Study," Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 13, pp. 872-888, 2023, doi//:10.21597/jist.1187616.
  • [26] M. A. A. Ibrahim, E. A. A. Badr, A. H. M. Abdelrahman, N. M. Almansour, G. A. H. Mekhemer, A. M. Shawky, et al., "In Silico Targeting Human Multidrug Transporter ABCG2 in Breast Cancer: Database Screening, Molecular Docking, and Molecular Dynamics Study," Mol Inform, vol. 41, p. e2060039, Feb 2022, doi//:10.1002/minf.202060039.
  • [27] Y. Yi, K. Shi, S. Ding, J. Hu, C. Zhang, J. Mei, et al., "A general strategy for protein affinity-ligand oriented-immobilization and screening for bioactive compounds," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 1218, p. 123591, Mar 1 2023, doi//:10.1016/j.jchromb.2023.123591.
  • [28] S. Gu, C. Shen, J. Yu, H. Zhao, H. Liu, L. Liu, et al., "Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?," Brief Bioinform, vol. 24, Mar 19 2023, doi//:10.1093/bib/bbad008.
  • [29] J. Jimenez-Luna, F. Grisoni, N. Weskamp, and G. Schneider, "Artificial intelligence in drug discovery: recent advances and future perspectives," Expert Opin Drug Discov, vol. 16, pp. 949-959, Sep 2021, doi//:10.1080/17460441.2021.1909567.
  • [30] M. Khanal, A. Acharya, R. Maharjan, K. Gyawali, R. Adhikari, D. D. Mulmi, et al., "Identification of potent inhibitors of HDAC2 from herbal products for the treatment of colon cancer: Molecular docking, molecular dynamics simulation, MM/GBSA calculations, DFT studies, and pharmacokinetic analysis," PLoS One, vol. 19, p. e0307501, 2024, doi//:10.1371/journal.pone.0307501.
  • [31] Y. Tong, X. Song, Y. Zhang, Y. Xu, and Q. Liu, "Insight on structural modification, biological activity, structure-activity relationship of PPD-type ginsenoside derivatives," Fitoterapia, vol. 158, p. 105135, Apr 2022, doi//:10.1016/j.fitote.2022.105135.
  • [32] X. Y. Gao, G. C. Liu, J. X. Zhang, L. H. Wang, C. Xu, Z. A. Yan, et al., "Pharmacological Properties of Ginsenoside Re," Front Pharmacol, vol. 13, p. 754191, 2022, doi//:10.3389/fphar.2022.754191.
  • [33] T. Zhang, S. Zhong, L. Hou, Y. Wang, X. Xing, T. Guan, et al., "Computational and experimental characterization of estrogenic activities of 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol," J Ginseng Res, vol. 44, pp. 690-696, Sep 2020, doi//:10.1016/j.jgr.2018.05.001.
  • [34] S. Liu, Z. Ai, Y. Hu, G. Ren, J. Zhang, P. Tang, et al., "Ginseng glucosyl oleanolate inhibit cervical cancer cell proliferation and angiogenesis via PI3K/AKT/HIF-1alpha pathway," NPJ Sci Food, vol. 8, p. 105, Dec 19 2024, doi//:10.1038/s41538-024-00341-3.
  • [35] M. Sniadecki, M. Brzezinski, K. Darecka, D. Klasa-Mazurkiewicz, P. Poniewierza, M. Krzeszowiec, et al., "BARD1 and Breast Cancer: The Possibility of Creating Screening Tests and New Preventive and Therapeutic Pathways for Predisposed Women," Genes (Basel), vol. 11, Oct 24 2020, doi//:10.3390/genes11111251.
  • [36] A. S, M. Imran P K, K. MohİDeen A, S. Meeran I, and S. T. K, "Computational analysis using ADMET profiling, DFT calculations and molecular docking of two anti-cancer drugs," Turkish Computational and Theoretical Chemistry, vol. 7, pp. 37-50, 2023, doi//:10.33435/tcandtc.1102295.
  • [37] J. Yang, K. He, M. Zhang, L. Wu, S. Qin, M. Luo, et al., "Unveiling the therapeutic potential of epigallocatechin gallate in liver cancer: insights from network pharmacology and in vitro assays," Nat Prod Res, pp. 1-5, Aug 2 2024, doi//:10.1080/14786419.2024.2384083.
  • [38] A. C. J. de Araujo, P. R. Freitas, I. M. Araujo, G. M. Siqueira, J. A. de Oliveira Borges, D. S. Alves, et al., "Potentiating-antibiotic activity and absorption, distribution, metabolism, excretion and toxicity properties (ADMET) analysis of synthetic thiadiazines against multi-drug resistant (MDR) strains," Fundam Clin Pharmacol, vol. 38, pp. 84-98, Feb 2024, doi//:10.1111/fcp.12950.
  • [39] S. Akash, F. I. Aovi, M. A. K. Azad, A. Kumer, U. Chakma, M. R. Islam, et al., "A drug design strategy based on molecular docking and molecular dynamics simulations applied to development of inhibitor against triple-negative breast cancer by Scutellarein derivatives," PLoS One, vol. 18, p. e0283271, 2023, doi//:10.1371/journal.pone.0283271.
  • [40] T. L. Sestic, J. J. Ajdukovic, M. A. Marinovic, E. T. Petri, and M. P. Savic, "In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects," Steroids, vol. 189, p. 109147, Jan 2023, doi//:10.1016/j.steroids.2022.109147.
  • [41] D. Patel, N. Sethi, P. Patel, S. Shah, and K. Patel, "Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review," Eur J Pharm Biopharm, vol. 198, p. 114267, May 2024, doi//:10.1016/j.ejpb.2024.114267.
  • [42] S. Yalcin, "Molecular Docking, Drug Likeness, and ADMET Analyses of Passiflora Compounds as P-Glycoprotein (P-gp) Inhibitor for the Treatment of Cancer," Current Pharmacology Reports, vol. 6, pp. 429-440, 2020, doi//:10.1007/s40495-020-00241-6.
  • [43] X. Li, L. Tang, Z. Li, D. Qiu, Z. Yang, and B. Li, "Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms," Molecules, vol. 28, Mar 2 2023, doi//:10.3390/molecules28052326.
  • [44] P. Chunarkar-Patil, M. Kaleem, R. Mishra, S. Ray, A. Ahmad, D. Verma, et al., "Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies," Biomedicines, vol. 12, Jan 16 2024, doi//:10.3390/biomedicines12010201
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Research Article
Yazarlar

Nil Sazlı 0009-0006-6740-1169

Deniz Karataş 0000-0002-8176-4883

Yayımlanma Tarihi 29 Eylül 2025
Gönderilme Tarihi 12 Mayıs 2025
Kabul Tarihi 22 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

APA Sazlı, N., & Karataş, D. (2025). COMPUTATIONAL EVALUATION OF GINSENOSIDES AS ALTERNATIVE THERAPEUTIC AGENTS TARGETING THE BREAST CANCER-ASSOCIATED BARD1 GENE: MOLECULAR DOCKING AND ARTIFICIAL INTELLIGENCE APPROACHES. Innovative Approaches to Engineering Problems, 1(2), 36-44.