Research Article
BibTex RIS Cite

DİK KANAL İÇERİSİNDEKİ KARIŞIK TAŞINIM İLE ISI TRANSFERİNİN YARI SİLİNDİRİK AKIŞ ENGELLERİ KULLANILARAK İYİLEŞTİRİLMESİNİN SAYISAL OLARAK İNCELENMESİ

Year 2022, , 1 - 16, 30.04.2022
https://doi.org/10.47480/isibted.1106571

Abstract

Bu çalışmada; dik ve içinde ısı akısına sahip yarı silindirik engeller bulunan bir kanaldaki karışık konveksiyonun ısı transferine ve akış özelliklerine etkisi sayısal olarak incelenmiştir. Yarı silindirik engellerin birbirlerine olan uzaklıkları, konumları ve sayıları değiştirilerek ısı transferine ve akış özelliklerine etkisi belirlenmeye çalışılmıştır. Çalışmada, tek yarı silindirik engelin, alt alta bulunan iki yarı silindirik engelin ve karşılıklı bulunan iki yarı silindirik engelin karışık konveksiyonla olan akış ve ısı transferine etkileri irdelenmiştir. Sonuç olarak; engel çapının kanal genişliğine oranının (BR) arttırılmasının ısı transferini arttırdığı görülmüştür. BR= 0,15 den 0,75 değerine değiştirildiğinde; Ri sayısının artışına bağlı olarak (Ri = 50-200) ortalama Nu sayısındaki artışın %58,3 olduğu belirlenmiştir. Engellerin birbirine olan uzaklıklarını temsil eden L/D oranı arttığında; Nusselt sayısının genel olarak arttığı görülmüştür. L/D = 0,25-1,5 aralığında arttırıldığında; ortalama Nu sayısında %25,2’lik bir artış olduğu, en yüksek Nu sayısının L/D = 1 ve Ri = 300 olduğu durumda meydana geldiği tespit edilmiştir. Karşılıklı bulunan iki yarı silindirik engelin olması durumunda ise; BR oran arttıkça, Ri sayısının artmasına bağlı olarak Nusselt sayısının arttığı tespit edilmiştir. BR = 0,15-0,30 aralığında arttırıldığında; düşük Ri sayılarında (Ri=50) ortalama Nu sayısındaki artış %36,3 olarak belirlenmiş, yüksek Ri sayılarında (Ri = 200) ise ortalama Nu sayısındaki artışın %23,1 olarak meydana geldiği tespit edilmiştir. Ayrıca; sayısal çalışmanın sonuçları literatürde bulunan deneysel çalışmalarla da karşılaştırılarak; sıcaklık dağılımını ve akış özelliklerini iyi şekilde temsil edebildiği görülmüştür.

References

  • Adachi T. ve Uehara H., 2001, Correlation between heat transfer and pressure drop in channels with periodically grooved parts, International Journal of Heat and Mass Transfer, 44, 22, 4333-4343. Auletta A., Manca O., Morrone B. ve Naso V., 2001, Heat transfer enhancement by the chimney effect in a vertical isoflux channel, International Journal of Heat and Mass Transfer, 44, 4345–4357.
  • Barboy S., Rashkovan A. ve Ziskind G., 2012, Determination of hot spots on a heated wavy wall in channel flow, International Journal of Heat and Mass Transfer, 55, 3576–3581.
  • Barletta A. ve Zanchini E., 1999, On the choice of the reference temperature for fully developed mixed convection in a vertical channel, International Journal of Heat and Mass Transfer, 42, 3169–3181.
  • Bilgin E., Du S. Q. ve Vasseur P., 1998, The mixed convection heat transfer in open ended channels with protruding heaters, Heat and Mass Transfer, 34, 4, 263-270.
  • Boutina L. ve Bessaih R., 2011, Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel, Applied Thermal Engineering, 31, 11-12, 2052-2062.
  • Çalışır T., Çalışkan S., Kilic M. ve Başkaya S., 2017, Numerical investigation of flow field on ribbed surfaces using impinging jets, Journal of the Faculty of Engineering and Architecture of Gazi University, 32, 1, 119-130.
  • Forooghi P. ve Hooman K., 2013, Effect of buoyancy on turbulent convection heat transfer in corrugated channels a numerical study, International Journal of Heat and Mass Transfer, 64, 850–862.
  • Hamouche A. ve Bessaih R., 2009, Mixed convection air cooling of protruding heat sources mounted in a horizontal channel, International Communications in Heat and Mass Transfer, 36, 8, 841-849.
  • Herman I. C. ve Kang E., 2002, Heat transfer enhancement in a grooved channel with curved vanes, International Journal of Heat and Mass Transfer, 4518, 3741-3757.
  • Jang J. H. ve Yan W. M., 2004, Mixed convection heat and mass transfer along a vertical wavy surface, International Journal of Heat and Mass Transfer, 47, 3, 419-428.
  • Kilic M. ve Baskaya Ş., 2017, Improvement of heat transfer from high heat flux surfaces by using vortex promoters with different geometries and impinging jets‎, Journal of the Faculty of Engineering and Architecture of Gazi University, 32, 3, 693-707.
  • Kilic M., Calisir T. ve Baskaya Ş., 2017, Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet‎, Heat Transfer Research, 48, 5, 435-463.
  • Lakkis I. ve Moukalled F., 2008, Natural convection heat transfer in channels with isothermally heated convex surfaces, Numeric Heat Transfer, Part A: Applications, 53, 11, 1176-1194.
  • Mills Z. G., Warey A. ve Alexeev A., 2016, Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels, International Journal of Heat and Mass Transfer, 97, 450-460.
  • Moukalled F., Doughan A. ve Acharya S., 2000, Parametric study of mixed convection in channels with concave and convex surfaces, International Journal of Heat and Mass Transfer, 43, 1947-1963.
  • Oztop H. F., 2005, Numerical study of flow and heat transfer in curvilinear ducts: applications of elliptic grid generation, Applied Mathematics and Computation, 168, 1449-1460. Rao G. ve Narasimham G., 2007, Laminar conjugate mixed convection in a vertical channel with heat generating components, International Journal of Heat and Mass Transfer, 50, 3561–3574.
  • Rosas I. Y., Treviño C. ve Suástegui L., 2017, Experimental study of mixed convection heat transfer in a vertical channel with a one-sided semi cylindrical constriction with prescribed heat flux, International Journal of Heat and Fluid Flow, 67, 155-167.
  • Singh N., Sivan R., Sotoa M., Faizal M. ve Ahmed, M., 2016, Experimental studies on parallel wavy channel heat exchangers with varying channel inclination angles, Experimental Thermal Fluid Science, 75, 173–182.
  • Tanda G., 2004, Heat transfer in rectangular channels with transverse and v-shaped broken ribs, International Journal of Heat and Mass Transfer, 47, 229–243.
  • Wahba E., 2011, Mixed convection flows in a vertical plane duct preceded by a sudden expansion, International Journal Numeric Method Heat Fluid Flow, 21, 399–417.
  • Wang G. ve Vanka S., 1995, Convective heat transfer in periodic wavy passages, International Journal Heat and Mass Transfer, 38, 3219–3230.
  • Young T. ve Vafai K., 1998, Convective cooling of a heated obstacle in a channel, International Journal Heat and Mass Transfer, 41, 3131–3148. Young T. ve Vafai K., 1999, Experimental and numerical investigation of forced convective characteristics of arrays of channel mounted obstacles, ASME Journal Heat Transfer, 121, 34–42. Özdemir S., 2018, Bir dik kanal içerisindeki yarı silindirik yüzeylerden olan karışık taşınım ile ısı transferinin nümerik olarak incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.

NUMERICAL INVESTIGATION OF ENHANCING MIXED CONVECTION HEAT TRANSFER BY USING SEMI-CYLINDRICAL OBSTACLES IN A VERTICAL CHANNEL

Year 2022, , 1 - 16, 30.04.2022
https://doi.org/10.47480/isibted.1106571

Abstract

In this study; effects of mixed convection on heat transfer and flow properties was investigated numerically for a vertical channel which has semi-cylindrical obstacles with heat flux. Effects of distance, location and number of these semi-cylindrical obstacles on heat transfer and flow properties have been examined. The effect of one semi-cylindrical obstacle, two semi-cylindrical obstacles located one under the other and two semi-cylindrical obstacles on opposite sides were investigated in the study. As a result; it is obtained that increasing the ratio of the obstacle diameter to the channel width (BR) causes an increase on heat transfer. Increasing BR ratio from 0.15 to 0.75, depending on the increase of Ri number from 50 to 200 causes an increase of 58.3% on average Nu number. Increasing L/D ratio, which represents the distance between obstacles, causes generally an increase in the average Nu number. Increasing L/D ratio from 0.25 to 1.5 results in an increase of 25.2% on the average Nu number. The highest Nu number can be obtained for L/D = 1 and Ri = 300. For the case of two semi-cylindrical obstacles on opposite sides; it was seen that increasing the BR ratio causes an increase in the average Nu number depending on the increase in the Ri number. Increasing BR ratio from 0.15 to 0.30 yields an increase of 36.3% for a low Ri number (Ri=50) and an increase of 23.1% for a high Ri number (Ri = 200) in the average Nu number. Moreover; it has been shown that numerical results can well represent the temperature distribution and flow properties by comparison of these results with experimental results in the literature.

References

  • Adachi T. ve Uehara H., 2001, Correlation between heat transfer and pressure drop in channels with periodically grooved parts, International Journal of Heat and Mass Transfer, 44, 22, 4333-4343. Auletta A., Manca O., Morrone B. ve Naso V., 2001, Heat transfer enhancement by the chimney effect in a vertical isoflux channel, International Journal of Heat and Mass Transfer, 44, 4345–4357.
  • Barboy S., Rashkovan A. ve Ziskind G., 2012, Determination of hot spots on a heated wavy wall in channel flow, International Journal of Heat and Mass Transfer, 55, 3576–3581.
  • Barletta A. ve Zanchini E., 1999, On the choice of the reference temperature for fully developed mixed convection in a vertical channel, International Journal of Heat and Mass Transfer, 42, 3169–3181.
  • Bilgin E., Du S. Q. ve Vasseur P., 1998, The mixed convection heat transfer in open ended channels with protruding heaters, Heat and Mass Transfer, 34, 4, 263-270.
  • Boutina L. ve Bessaih R., 2011, Numerical simulation of mixed convection air-cooling of electronic components mounted in an inclined channel, Applied Thermal Engineering, 31, 11-12, 2052-2062.
  • Çalışır T., Çalışkan S., Kilic M. ve Başkaya S., 2017, Numerical investigation of flow field on ribbed surfaces using impinging jets, Journal of the Faculty of Engineering and Architecture of Gazi University, 32, 1, 119-130.
  • Forooghi P. ve Hooman K., 2013, Effect of buoyancy on turbulent convection heat transfer in corrugated channels a numerical study, International Journal of Heat and Mass Transfer, 64, 850–862.
  • Hamouche A. ve Bessaih R., 2009, Mixed convection air cooling of protruding heat sources mounted in a horizontal channel, International Communications in Heat and Mass Transfer, 36, 8, 841-849.
  • Herman I. C. ve Kang E., 2002, Heat transfer enhancement in a grooved channel with curved vanes, International Journal of Heat and Mass Transfer, 4518, 3741-3757.
  • Jang J. H. ve Yan W. M., 2004, Mixed convection heat and mass transfer along a vertical wavy surface, International Journal of Heat and Mass Transfer, 47, 3, 419-428.
  • Kilic M. ve Baskaya Ş., 2017, Improvement of heat transfer from high heat flux surfaces by using vortex promoters with different geometries and impinging jets‎, Journal of the Faculty of Engineering and Architecture of Gazi University, 32, 3, 693-707.
  • Kilic M., Calisir T. ve Baskaya Ş., 2017, Experimental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet‎, Heat Transfer Research, 48, 5, 435-463.
  • Lakkis I. ve Moukalled F., 2008, Natural convection heat transfer in channels with isothermally heated convex surfaces, Numeric Heat Transfer, Part A: Applications, 53, 11, 1176-1194.
  • Mills Z. G., Warey A. ve Alexeev A., 2016, Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels, International Journal of Heat and Mass Transfer, 97, 450-460.
  • Moukalled F., Doughan A. ve Acharya S., 2000, Parametric study of mixed convection in channels with concave and convex surfaces, International Journal of Heat and Mass Transfer, 43, 1947-1963.
  • Oztop H. F., 2005, Numerical study of flow and heat transfer in curvilinear ducts: applications of elliptic grid generation, Applied Mathematics and Computation, 168, 1449-1460. Rao G. ve Narasimham G., 2007, Laminar conjugate mixed convection in a vertical channel with heat generating components, International Journal of Heat and Mass Transfer, 50, 3561–3574.
  • Rosas I. Y., Treviño C. ve Suástegui L., 2017, Experimental study of mixed convection heat transfer in a vertical channel with a one-sided semi cylindrical constriction with prescribed heat flux, International Journal of Heat and Fluid Flow, 67, 155-167.
  • Singh N., Sivan R., Sotoa M., Faizal M. ve Ahmed, M., 2016, Experimental studies on parallel wavy channel heat exchangers with varying channel inclination angles, Experimental Thermal Fluid Science, 75, 173–182.
  • Tanda G., 2004, Heat transfer in rectangular channels with transverse and v-shaped broken ribs, International Journal of Heat and Mass Transfer, 47, 229–243.
  • Wahba E., 2011, Mixed convection flows in a vertical plane duct preceded by a sudden expansion, International Journal Numeric Method Heat Fluid Flow, 21, 399–417.
  • Wang G. ve Vanka S., 1995, Convective heat transfer in periodic wavy passages, International Journal Heat and Mass Transfer, 38, 3219–3230.
  • Young T. ve Vafai K., 1998, Convective cooling of a heated obstacle in a channel, International Journal Heat and Mass Transfer, 41, 3131–3148. Young T. ve Vafai K., 1999, Experimental and numerical investigation of forced convective characteristics of arrays of channel mounted obstacles, ASME Journal Heat Transfer, 121, 34–42. Özdemir S., 2018, Bir dik kanal içerisindeki yarı silindirik yüzeylerden olan karışık taşınım ile ısı transferinin nümerik olarak incelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Sedat Özdemir 0000-0002-6790-4608

Mustafa Kılıç 0000-0002-0721-0444

Tamer Çalışır This is me 0000-0002-0721-0444

Şenol Başkaya This is me

Publication Date April 30, 2022
Published in Issue Year 2022

Cite

APA Özdemir, S., Kılıç, M., Çalışır, T., Başkaya, Ş. (2022). DİK KANAL İÇERİSİNDEKİ KARIŞIK TAŞINIM İLE ISI TRANSFERİNİN YARI SİLİNDİRİK AKIŞ ENGELLERİ KULLANILARAK İYİLEŞTİRİLMESİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 42(1), 1-16. https://doi.org/10.47480/isibted.1106571