Araştırma Makalesi
BibTex RIS Kaynak Göster

MEME VE KARACİĞER DOKULARINDA TEK VE ÇİFT YUVALI ANTEN KULLANILARAK YAPILAN MİKRODALGA KANSER TEDAVİSİNİN NÜMERİK ANALİZİ

Yıl 2022, , 37 - 48, 30.04.2022
https://doi.org/10.47480/isibted.1107429

Öz

Mikrodalga tedavisi, meme ve karaciğer kanseri gibi hastalıklarda, kanserli hücreleri yok etmek için cerrahi müdahale ihtiyacını ortadan kaldırabilen etkili bir yöntemdir. Mevcut çalışma, malign hücrelerin daha geniş bir çevrede, daha kısa sürede yakılırken çevre dokulara en az hasara sebep olmayı amaçlayan bir metodoloji sunmaı hedeflemektedir. Bu çalışma, 2.45 GHz frekans ve 10 W güç değeri kullanılarak sonlu eleman metoduyla gerçekleştirilmiştir. Meme ve karaciğer dokularında, eş eksenli tek yuvalı ve çift yuvalı antenler için bir kıyaslama sunulmuştur. Araştırılan parametreler yuva sayısı, doku tipi ve mikrodalga kanser tedavisinin süresi iken sonuçta incelenen parametreler özgül soğrulma oranı ve sıcaklık dağılımıdır. Çalışmanın sonucunda, hem en yüksek özgül soğrulma oranı hem de en yüksek sıcaklık değeri, karaciğerde tek yuvalı antenle elde edilmiştir ve elde edilen sıcaklık dağılımının zamana bağlı olduğu görülmüştür. Karaciğerde elde edilen en yüksek sıcaklık değeri, tek yuvalı antende 93.9oC ve çift yuvalı antende 82.8 oC olmuştur. Aynı değerler meme dokusunda, tek yuvalı antende 93.0 oC ve çift yuvalı antende 69.8 oC olarak kaydedilmiştir. Tek yuvalı anten için, karaciğer ve meme dokularının tedavisinde kullanılmak üzere yeni korelasyonlar sunulmuştur. Yapılan çalışmanın, tıp alanında katkı sağlaması beklenmektedir.

Kaynakça

  • Acikgoz H. and Turer I., 2014, A Novel Microwave Coaxial Slot Antenna for Liver Tumor Ablation, Advanced Electromagnetics, 3, 1, 20-25.
  • Bertram J.M., Yang D., Converse M.C., Webster J.G. and Mahvi D.M., 2006, Antenna design for microwave hepatic ablation using an axismmetric electromagnetic model, BioMedical Engineering OnLine, 5:15.
  • Hamada L., Saito K., Yoshimura H. and Ito K., 2000, Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: Longitudinal control of heating patterns, International Journal of Hyperthermia, 16, 3, 219-229.
  • Jiao T., Wang H., Zhang Y., Yu X., Xue H., Lv H., Jing X., Zhan H. and Wang J., 2012, A coaxial-slot antenna for invasive microwave hyperthermia therapy, Journal of Biomedical Science and Engineering, 5, 198-202.
  • Kaur S. and Mann P.S., 2014, Comparison of Single Slot and Double Slot Antenna for the Treatment of Hepatocellular Carcinoma, International Journal of Research in Computer Applications and Robotics (IJRCAR), 2, 5, 86-91.
  • Keane D., Ruskin J., Norris N., Chapelon P.A. and Bérubé D., 2004, In Vitro and In Vivo Evaluation of the Thermal Patterns and Lesions of Catheter Ablation with a Microwave Monopole Antenna, Journal of Interventional Cardiac Electrophysiology, 10, 111-119.
  • Keangin P., Rattanadecho P. and Wessapan T., 2011, An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna, International Communications in Heat and Mass Transfer, 38, 757-766.
  • Keangin P. and Rattanadecho P., 2013, Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation, International Journal of Heat and Mass Transfer, 67, 46–60.
  • Keangin P. and Rattanadecho P., 2018, A numerical investigation of microwave ablation on porous liver tissue, Advances in Mechanical Engineering, 10, 8, 1-13.
  • Liu A.J., Zhou H. and Kang W., 2013, A numerical study on Microwave Coagulation Therapy, Applied Mathematical Sciences, 7, 104, 5151-5164.
  • Razib A., Hossain K.A. and Hossain S., 2016, Microwave ablation technique (MWA) for cancer treatment, Proceedings of the 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), Bangladesh, 1-6.
  • Rossetto F. and Staufer P.R., 1999, Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators, IEEE Transactions on Biomedical Engineering, 46, 11, 1310-1319.
  • Rubio M.F.J.C., Hernánde A.V., Salas L.L., Ávila-Navarro E. and Navarro E.A., 2011, Coaxial Slot Antenna Design for Microwave Hyperthermia using Finite Difference Time-Domain and Finite Element Method, The Open Nanomedicine Journal, 3, 2-9.
  • Rubio M.F.J.C., López G.D.G., Perezgasga F.V., García F.F., Hernández A.V. and Salas L.L., 2015, Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna, International Journal of Thermophysics, 36, 2687–2704.
  • Selmi M., Dukhyil A.A.B. and Belmabrouk H., 2020, Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Applied Sciences, 10, 1, 211.
  • Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. and Bray F., 2021, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA-A Cancer Journal for Clinicians, 1-41.
  • Tehrani M.H.H., Soltani M., Kashkooli F.M. and Raahemifar K., 2020, Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes—A computational approach, PLOS ONE, 15, 6.
  • Uzman B., Yilmaz A., Acikgoz H. and Mittra R., 2020, Graphene-based microwave coaxial antenna for microwave ablation: thermal analysis, International Journal of Microwave and Wireless Technologies, 1-9.
  • Zafar T., Zafar J. and Zafar H., 2014, Development and microwave analysis of slot antennas for localized hyperthermia treatment of hepatocellular liver tumor, Australasian Physical & Engineering Sciences in Medicine, 37, 673–679.

NUMERICAL ANALYSIS OF MICROWAVE CANCER THERAPY USING SINGLE AND DOUBLE SLOT ANTENNAS FOR BREAST AND LIVER TISSUES

Yıl 2022, , 37 - 48, 30.04.2022
https://doi.org/10.47480/isibted.1107429

Öz

Microwave cancer therapy is an effective method used to destroy cancer cells which eliminates the need for surgical intervention in diseases such as breast and liver cancer. The present study aims to present a methodology for the destruction of killing the malignant cells in a wider periphery by means of burning in a shorter time meanwhile causing minimal damage to the healthy tissues. The study is carried out for a frequency value of 2.45 GHz and for a power value of 10 W using finite element methods. A comparison between coaxial single-slot antenna and double-slot antenna is conducted for liver and breast tissues. Investigated parameters are the slot number, the type of the tissue and the duration of microwave cancer therapy. The specific absorption rate and temperature distribution are the examined parameters. The results of the study show that both peak specific absorption rate and peak temperature value are obtained for microwave coaxial single slot antenna within the liver tissue, and it is observed that the temperature distribution depends on time. Maximum temperature value is attained as 93.9oC and 82.8oC for single and double slot antennas for liver tissue whereas the so-called values are 93.0oC and 69.8oC for breast tissue. New correlations are given for the treatment of liver and breast tissues using coaxial single slot antenna. It is anticipated that the present study makes a contribution in the field of medicine.

Kaynakça

  • Acikgoz H. and Turer I., 2014, A Novel Microwave Coaxial Slot Antenna for Liver Tumor Ablation, Advanced Electromagnetics, 3, 1, 20-25.
  • Bertram J.M., Yang D., Converse M.C., Webster J.G. and Mahvi D.M., 2006, Antenna design for microwave hepatic ablation using an axismmetric electromagnetic model, BioMedical Engineering OnLine, 5:15.
  • Hamada L., Saito K., Yoshimura H. and Ito K., 2000, Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: Longitudinal control of heating patterns, International Journal of Hyperthermia, 16, 3, 219-229.
  • Jiao T., Wang H., Zhang Y., Yu X., Xue H., Lv H., Jing X., Zhan H. and Wang J., 2012, A coaxial-slot antenna for invasive microwave hyperthermia therapy, Journal of Biomedical Science and Engineering, 5, 198-202.
  • Kaur S. and Mann P.S., 2014, Comparison of Single Slot and Double Slot Antenna for the Treatment of Hepatocellular Carcinoma, International Journal of Research in Computer Applications and Robotics (IJRCAR), 2, 5, 86-91.
  • Keane D., Ruskin J., Norris N., Chapelon P.A. and Bérubé D., 2004, In Vitro and In Vivo Evaluation of the Thermal Patterns and Lesions of Catheter Ablation with a Microwave Monopole Antenna, Journal of Interventional Cardiac Electrophysiology, 10, 111-119.
  • Keangin P., Rattanadecho P. and Wessapan T., 2011, An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna, International Communications in Heat and Mass Transfer, 38, 757-766.
  • Keangin P. and Rattanadecho P., 2013, Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation, International Journal of Heat and Mass Transfer, 67, 46–60.
  • Keangin P. and Rattanadecho P., 2018, A numerical investigation of microwave ablation on porous liver tissue, Advances in Mechanical Engineering, 10, 8, 1-13.
  • Liu A.J., Zhou H. and Kang W., 2013, A numerical study on Microwave Coagulation Therapy, Applied Mathematical Sciences, 7, 104, 5151-5164.
  • Razib A., Hossain K.A. and Hossain S., 2016, Microwave ablation technique (MWA) for cancer treatment, Proceedings of the 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), Bangladesh, 1-6.
  • Rossetto F. and Staufer P.R., 1999, Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators, IEEE Transactions on Biomedical Engineering, 46, 11, 1310-1319.
  • Rubio M.F.J.C., Hernánde A.V., Salas L.L., Ávila-Navarro E. and Navarro E.A., 2011, Coaxial Slot Antenna Design for Microwave Hyperthermia using Finite Difference Time-Domain and Finite Element Method, The Open Nanomedicine Journal, 3, 2-9.
  • Rubio M.F.J.C., López G.D.G., Perezgasga F.V., García F.F., Hernández A.V. and Salas L.L., 2015, Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna, International Journal of Thermophysics, 36, 2687–2704.
  • Selmi M., Dukhyil A.A.B. and Belmabrouk H., 2020, Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Applied Sciences, 10, 1, 211.
  • Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. and Bray F., 2021, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA-A Cancer Journal for Clinicians, 1-41.
  • Tehrani M.H.H., Soltani M., Kashkooli F.M. and Raahemifar K., 2020, Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes—A computational approach, PLOS ONE, 15, 6.
  • Uzman B., Yilmaz A., Acikgoz H. and Mittra R., 2020, Graphene-based microwave coaxial antenna for microwave ablation: thermal analysis, International Journal of Microwave and Wireless Technologies, 1-9.
  • Zafar T., Zafar J. and Zafar H., 2014, Development and microwave analysis of slot antennas for localized hyperthermia treatment of hepatocellular liver tumor, Australasian Physical & Engineering Sciences in Medicine, 37, 673–679.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Aykut Eren Bu kişi benim 0000-0003-2356-9331

Zeynep Aytaç Bu kişi benim 0000-0003-0717-5287

Oğuz Turgut Bu kişi benim 0000-0001-5480-1039

Burak Tığlı Bu kişi benim 0000-0003-1027-9247

Yayımlanma Tarihi 30 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Eren, A., Aytaç, Z., Turgut, O., Tığlı, B. (2022). MEME VE KARACİĞER DOKULARINDA TEK VE ÇİFT YUVALI ANTEN KULLANILARAK YAPILAN MİKRODALGA KANSER TEDAVİSİNİN NÜMERİK ANALİZİ. Isı Bilimi Ve Tekniği Dergisi, 42(1), 37-48. https://doi.org/10.47480/isibted.1107429