NUMERICAL ANALYSIS AND DIFFUSER VANE SHAPE OPTIMIZATION OF A RADIAL COMPRESSOR WITH THE OPEN-SOURCE SOFTWARE SU2
Year 2023,
, 233 - 242, 17.11.2023
Mustafa Kürşat Uzuner
,
Altuğ Başol
,
Bob Mıscho
Philipp Jenny
Abstract
In recent years, the usage of open-source computational fluid dynamics tools is on a rise both in industry and academia. SU2 is one of these open-source tools. Unlike other open-source alternatives, SU2 is equipped with boundary condition types, solvers and methods that are especially developed for the analysis and design of turbomachinery. The aim of this work is to explore and investigate the capabilities of SU2 in the prediction of performance parameters of radial compressors. Two different single stage shrouded compressor geometries, one with a vaneless diffuser and the other with a vaned diffuser have been investigated with steady state CFD. The compressors were designed by MAN Energy Solutions Schweiz AG. Computational results with SU2 showed a satisfactory agreement with both the experimental data and reference CFD solutions obtained with Fidelity Flow, which is formerly known as Numeca Fine TURBO. Only at the relatively higher mass flow rates the difference between references and SU2 were higher compared to other operating points. After performance parameters were successfully calculated with SU2, the optimization tools that come with SU2 were also used. A 2D adjoint optimization study on the vane of the vaned diffuser was carried out. The study was carried out at a single operating point that is close to choke conditions. The loss generated by the large separated flow region at the suction side of the diffuser vane was reduced by 0.55 % in the optimized geometry using minimal modifications on the existing vane geometry to keep the performance of the compressor intact at other operating points. However, the resulting modification increased the total pressure loss by 0.86 % at one of the design operating points. This performance penalty could be due to the discontinuity in the vane geometry generated by the optimizer. Overall, the study shows that SU2 has the basic numerical schemes and models that are required for the analysis of radial turbomachinery flows and geometry optimization.
References
- de Castro İ.C., 2019, Assessment of SU2 for radial compressor performance prediction, [Online]. Available: http://resolver.tudelft.nl/uuid:604be835-1715-42e9-bd87-a856322f71d4
- Yan C., Wang B., He X., Zhao F., Zheng X., Vahdati M. and Zheng X., 2023, Extension and Validation of the Turbomachinery Capabilites of SU2 Open-SOurce CFD Code, Turbomachinery Technical Conference and Exposition, Boston.
- Mollá V.F., 2017, 3D-simulation of multi-stage turbomachinery by means of a non-reflecting mixing plane interface, [Online]. Available: http://resolver.tudelft.nl/uuid:324b6057-aeab-4ad8-ab24-5aa1a62819a0
- Keep J.A., Vitale S., Pini M. and Burigana M., 2017, Preliminary verification of the open-source CFD solver SU2 for radial-inflow turbine applications, Energy Procedia, vol. 129, pp. 1071-1077.
- Giles M., 1990, Nonreflecting boundary conditions for Euler equation calculations, AIAA, pp. 2050-2058.
- de Koning R.C.V., 2015, Development of a Parametric 3D Turbomachinery Blade Modeler, [Online]. Available: http://resolver.tudelft.nl/uuid:9bbcf030-af4b-42c8-a7e5-2157bde13706
- Vitale S., Pini M., Colonna P., 2020, Multistage Turbomachinery Design Using the Discrete Adjoint Method Within the Open-Source Software SU2, Journal of Propulsion and Power, pp. 1-14.
- Rubino A., Vitale S., Colonna P., Pini M., 2020, Fully-turbulent adjoint method for the unsteady shape optimization of multi-row turbomachinery," Aerospace Science and Technology, vol. 106.
- Giles M.B., Pierce N.A., 2000, An introduction to the Adjoint Approach to Design, Flow, Turbulence and Combustion, vol. 65, pp. 393-415.
- Ntanakas G.D., Meyer M., 2014, Towards Unsteady Adjoint Analysis for Turbomachinery Applications, European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona.
- Katsapoxaki P., Hottois R., Tran T.S., Schram C., Coussement G., Verstraete T., 2023, Adjoint-Based Aeroacoustic Optimization of NASA Rotor 37, Proceedings of ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, Boston.
- Châtel A., Verstraete T., 2022, Aerodynamic Optimization of the SRV2 Radial Compressor Using an Adjoint-Based Optimization Method, Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam.
- Hottois R., Châtel A. Verstraete T., 2023, Adjoint-Based Design Optimization of a Volute for a Radial Compressor, Int. J. Turbomach. Propuls. Power, vol. 8, no. 4.
- Trompoukis X.S., Tsiakas K.T., Asouti V.G., Giannakoglou K.C., 2023, Continuous Adjoint-Based Shape Optimization of a Turbomachinery Stage using a 3D Volumetric Parameterization, International Journal for Numerical Methods in Fluids, vol. 95, no. 7, pp. 1054-1075.
- Luo J., Chen Z., Zheng Y., 2022, A Gradient-Based Method Assisted by Surrogate Model for Robust Optimization of Turbomachinery Blades, Chinese Journal of Aeronautics, vol. 35, no. 10, pp. 1-7.
- Wu H., Da X., Wang D., Huang X., 2023, Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver, Aerospace, vol. 10, no. 2.
- Hicks R.M., Henne P.A., 1978, Wing Design by Numerical Optimization, J. of Aircraft, vol. 15, no. 7.
- Koshakji A., Quarteroni A., Rozza G., 2013, Free Form Deformation Techniques Applied to 3D Shape Optimization Problems, https://www.epfl.ch/labs/mathicse/wp-content/uploads/2018/10/44.2013_AK-AQ-GR.pdf .
- Menter F.R., 1994, Two-equation Eddy-viscosity Turbulence Models for Engineering Applications”, AIAA, vol. 32, no. 8, pp. 1598-1605.
AÇIK KAYNAK AKIŞKANLAR DİNAMİĞİ YAZILIMI SU2 İLE RADYAL BİR KOMPRESÖRÜN PERFORMANS ANALİZİ VE OPTİMİZASYONU
Year 2023,
, 233 - 242, 17.11.2023
Mustafa Kürşat Uzuner
,
Altuğ Başol
,
Bob Mıscho
Philipp Jenny
Abstract
Son yıllarda açık-kaynak hesaplamalı akışkanlar dinamiği yazılımlarının kullanımı hem akademi hem de endüstride gittikçe yaygınlaşmaktadır. SU2, bu açık kaynak akışkanlar dinamiği araçlarından biridir. Diğer açık kaynak araçlarda görülmeyen turbomakine simülasyonu ve tasarımına özel sınır koşulları, çözücüler ve metotlar SU2 içerisinde mevcuttur. Bu çalışmanın amacı, bir radyal kompresörün performans parametrelerinin SU2 ile belirlenmeye çalışılarak SU2’nin kabiliyetlerinin incelenmesidir. Bunun için tek aşamalı, kanatçıklı ve kanatçıksız difüzörlü olmak üzere iki farklı radyal kompresör kullanılmıştır. Bu kompresörler MAN Energy Solutions Schweiz AG tarafından tasarlanmıştır. SU2, deneysel veriler ve Fidelity Flow ile elde edilen sonuçlarla kıyaslandığında yeterli benzerlikte sonuçlar vermiştir. Yalnızca yüksek debili çalışma koşullarında referanslar ile aradaki farkın diğer noktalara göre açıldığı gözlemlenmiştir. Performans parametrelerinde başarılı sonuçlar elde edildikten sonra SU2 içerisinde hazır olarak bulunan optimizasyon araçlarının kabiliyetleri de denenmiştir. Kanatçıklı difüzörün kanatçığı üzerinde iki boyutlu bir adjoint optimizasyon yapılarak optimizasyon kabiliyetleri incelenmiştir. En kötü performansın görüldüğü, boğulma koşullarına yakın bir çalışma noktası optimizasyon için seçilmiştir. Optimizasyon sırasındaki şekil bozunumları başka çalışma noktalarında performansı aynı tutabilmek için olabildiğince küçük tutulmuştur. Kanatçığın basınç tarafında görülen akım ayrılmasının sebep olduğu kayıp optimizasyon sonucu %0.55 azaltılmıştır. Ancak, optimize edilmiş kanatçık profili bir başka tasarım çalışma noktasında denendiğinde toplam basınçta görülen kaybın %0.86 arttığı gözlemlenmiştir. Bu performans kaybının muhtemel ana sebebi olarak optimizasyon sonucu kanatçıkta oluşan kesiklilik gösterilebilir. Genel olarak bu çalışma, SU2’nin radyal turbomakine analizi ve optimizasyonu için gerekli temel nümerik şemalara ve modellere sahip olduğunu göstermektedir.
References
- de Castro İ.C., 2019, Assessment of SU2 for radial compressor performance prediction, [Online]. Available: http://resolver.tudelft.nl/uuid:604be835-1715-42e9-bd87-a856322f71d4
- Yan C., Wang B., He X., Zhao F., Zheng X., Vahdati M. and Zheng X., 2023, Extension and Validation of the Turbomachinery Capabilites of SU2 Open-SOurce CFD Code, Turbomachinery Technical Conference and Exposition, Boston.
- Mollá V.F., 2017, 3D-simulation of multi-stage turbomachinery by means of a non-reflecting mixing plane interface, [Online]. Available: http://resolver.tudelft.nl/uuid:324b6057-aeab-4ad8-ab24-5aa1a62819a0
- Keep J.A., Vitale S., Pini M. and Burigana M., 2017, Preliminary verification of the open-source CFD solver SU2 for radial-inflow turbine applications, Energy Procedia, vol. 129, pp. 1071-1077.
- Giles M., 1990, Nonreflecting boundary conditions for Euler equation calculations, AIAA, pp. 2050-2058.
- de Koning R.C.V., 2015, Development of a Parametric 3D Turbomachinery Blade Modeler, [Online]. Available: http://resolver.tudelft.nl/uuid:9bbcf030-af4b-42c8-a7e5-2157bde13706
- Vitale S., Pini M., Colonna P., 2020, Multistage Turbomachinery Design Using the Discrete Adjoint Method Within the Open-Source Software SU2, Journal of Propulsion and Power, pp. 1-14.
- Rubino A., Vitale S., Colonna P., Pini M., 2020, Fully-turbulent adjoint method for the unsteady shape optimization of multi-row turbomachinery," Aerospace Science and Technology, vol. 106.
- Giles M.B., Pierce N.A., 2000, An introduction to the Adjoint Approach to Design, Flow, Turbulence and Combustion, vol. 65, pp. 393-415.
- Ntanakas G.D., Meyer M., 2014, Towards Unsteady Adjoint Analysis for Turbomachinery Applications, European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona.
- Katsapoxaki P., Hottois R., Tran T.S., Schram C., Coussement G., Verstraete T., 2023, Adjoint-Based Aeroacoustic Optimization of NASA Rotor 37, Proceedings of ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, Boston.
- Châtel A., Verstraete T., 2022, Aerodynamic Optimization of the SRV2 Radial Compressor Using an Adjoint-Based Optimization Method, Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Rotterdam.
- Hottois R., Châtel A. Verstraete T., 2023, Adjoint-Based Design Optimization of a Volute for a Radial Compressor, Int. J. Turbomach. Propuls. Power, vol. 8, no. 4.
- Trompoukis X.S., Tsiakas K.T., Asouti V.G., Giannakoglou K.C., 2023, Continuous Adjoint-Based Shape Optimization of a Turbomachinery Stage using a 3D Volumetric Parameterization, International Journal for Numerical Methods in Fluids, vol. 95, no. 7, pp. 1054-1075.
- Luo J., Chen Z., Zheng Y., 2022, A Gradient-Based Method Assisted by Surrogate Model for Robust Optimization of Turbomachinery Blades, Chinese Journal of Aeronautics, vol. 35, no. 10, pp. 1-7.
- Wu H., Da X., Wang D., Huang X., 2023, Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver, Aerospace, vol. 10, no. 2.
- Hicks R.M., Henne P.A., 1978, Wing Design by Numerical Optimization, J. of Aircraft, vol. 15, no. 7.
- Koshakji A., Quarteroni A., Rozza G., 2013, Free Form Deformation Techniques Applied to 3D Shape Optimization Problems, https://www.epfl.ch/labs/mathicse/wp-content/uploads/2018/10/44.2013_AK-AQ-GR.pdf .
- Menter F.R., 1994, Two-equation Eddy-viscosity Turbulence Models for Engineering Applications”, AIAA, vol. 32, no. 8, pp. 1598-1605.