Araştırma Makalesi
BibTex RIS Kaynak Göster

Güneş enerjisiyle çalışan gömülü boru zarf sisteminin farklı zarflarda uygulanabilirliğine ilişkin karşılaştırmalı bir çalışma

Yıl 2025, Cilt: 45 Sayı: 2, 162 - 171, 30.10.2025
https://doi.org/10.47480/isibted.1618182

Öz

Bu çalışma, TRNSYS ile geliştirilen yeni bir simülasyon modeli kullanarak çeşitli bina zarflarındaki Güneş Enerjisiyle Çalışan Gömülü Boru Zarfı Sisteminin (SEPES) ısıtma verimliliğini karşılaştırmaktadır. Değerlendirme, iç hava sıcaklığını, duvarlardaki giriş ve çıkış suyu sıcaklıklarını, zarfların iç yüzey sıcaklıklarını ve altı farklı SEPES kurulumunda ısıtma enerjisi tüketimini içermektedir. Temel bulgular şunlardır: 1) SEPES, Harbin'deki soğuk kışlarda iç mekan sıcaklıklarını önemli ölçüde iyileştirir, tavan kurulumları sıcaklıkları 8,4℃'ye kadar artırır ve stratejik yerleşimler sıcaklığı ve enerji verimliliğini optimize eder; 2) SEPES borularındaki su sıcaklığı ısıtma kapasitesini gösterir, en yüksek sıcaklıklar doğu ve batı duvar kurulumlarındadır; 3) Tavana gömülü borular ısı kaybını engellemede en iyi performansı gösterir, yüzey sıcaklıkları 7,42℃ ile 11,59℃ arasındadır; 4) SEPES kurulumları günlük ısı yüklerini önemli ölçüde azaltır, tavan kurulumları %49,7'lik en yüksek enerji tasarrufu oranına ulaşır. Genel olarak tavan montajları en etkili olanlardır, bunu kuzey duvarı, zemin, güney duvarı, doğu duvarı ve batı duvarı takip eder.

Proje Numarası

GPF005A-2023

Kaynakça

  • Chen, H., Yang, L., & Chen, W. (2020). Modelling national, provincial and city-level low-carbon energy transformation pathways. Energy Policy, 137, 111096. https://doi.org/10.1016/j.enpol.2019.111096
  • D’Antoni, M., & Saro, O. (2013). Energy potential of a Massive Solar-Thermal Collector design in European climates. Solar energy, 93, 195-208. https://doi.org/10.1016/j.solener.2013.04.011
  • Feng, J., Schiavon, S., & Bauman, F. (2016). New method for the design of radiant floor cooling systems with solar radiation. Energy and Buildings, 125, 9-18. https://doi.org/10.1016/j.enbuild.2016.04.048
  • Guo, S., Yan, D., Hu, S., & Zhang, Y. (2021). Modelling building energy consumption in China under different future scenarios. Energy, 214, 119063. https://doi.org/10.1016/j.energy.2020.119063
  • He, Y., Zhou, H., & Fahimi, F. (2022). Modeling and demand-based control of responsive building envelope with integrated thermal mass and active thermal insulations. Energy and Buildings, 276, 112495. https://doi.org/10.1016/j.enbuild.2022.112495
  • Jiang, S., Li, X., Lyu, W., Wang, B., & Shi, W. (2020). Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline. Journal of Building Engineering, 31, 101435. https://doi.org/10.1016/j.jobe.2020.101435
  • Jobli, M. I., Yao, R., Luo, Z., Shahrestani, M., Li, N., & Liu, H. (2019). Numerical and experimental studies of a Capillary-Tube embedded PCM component for improving indoor thermal environment. Applied Thermal Engineering, 148, 466-477. https://doi.org/10.1016/j.applthermaleng.2018.10.041
  • Klein, S. A. (2018). Calculation of Flat-Plate Collector Loss Coefficients. Renewable Energy. https://doi.org/10.4324/9781315793245-69
  • Krzaczek, M., Florczuk, J., & Tejchman, J. (2019). Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied energy, 254, 113711. https://doi.org/10.1016/j.apenergy.2019.113711
  • Krzaczek, M., & Kowalczuk, Z. (2011). Thermal Barrier as a technique of indirect heating and cooling for residential buildings. Energy and Buildings, 43(4), 823-837. https://doi.org/10.1016/j.enbuild.2010.12.002
  • Li, N., & Chen, Q. (2019). Experimental study on heat transfer characteristics of interior walls under partial-space heating mode in hot summer and cold winter zone in China. Applied Thermal Engineering, 162, 114264. https://doi.org/10.1016/j.applthermaleng.2019.114264
  • Ma, P., Wang, L.-S., & Guo, N. (2014). Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower. Applied energy, 127, 172-181. https://doi.org/10.1016/j.apenergy.2014.04.031
  • Shen, C., & Li, X. (2017). Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season. Energy and buildings, 138, 318-331. https://doi.org/10.1016/j.enbuild.2016.12.064
  • Shen, C., Li, X., & Yan, S. (2017). Numerical study on energy efficiency and economy of a pipe-embedded glass envelope directly utilizing ground-source water for heating in diverse climates. Energy Conversion and Management, 150, 878-889. https://doi.org/10.1016/j.enconman.2017.04.063
  • Shen, J., Wang, Z., Luo, Y., Jiang, X., Zhao, H., Cui, D. e., & Tian, Z. (2022). Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering, 59, 105123. https://doi.org/10.1016/j.jobe.2022.105123
  • Su, X., Zhang, L., Liu, Z., Luo, Y., Lian, J., & Luo, Y. (2019). A computational model of an improved cooling radiant ceiling panel system for optimization and design. Building and Environment, 163, 106312. https://doi.org/10.1016/j.buildenv.2019.106312
  • Sun, H., Wu, Y., Lin, B., Duan, M., Lin, Z., & Li, H. (2020). Experimental investigation on the thermal performance of a novel radiant heating and cooling terminal integrated with a flat heat pipe. Energy and Buildings, 208, 109646. https://doi.org/10.1016/j.enbuild.2019.109646
  • Wang, L., Onn, C. C., Chew, B. T., Li, W., & Li, Y. (2024). Numerical Study of the Solar Energy-Powered Embedded Pipe Envelope System. Buildings, 14(3), 613. https://doi.org/10.3390/buildings14030613
  • Xie, J.-l., Zhu, Q.-y., & Xu, X.-h. (2012). An active pipe-embedded building envelope for utilizing low-grade energy sources. Journal of Central South University, 19(6), 1663-1667. https://doi.org/10.1007/s11771-012-1190-3
  • Xu, K., Xu, X., & Yan, T. (2023). Performance evaluation of a pipe-embedded phase change material (PE-PCM) roof integrated with solar collector. Journal of Building Engineering, 71, 106582. https://doi.org/10.1016/j.jobe.2023.106582
  • Xu, X., Wang, S., Wang, J., & Xiao, F. (2010). Active pipe-embedded structures in buildings for utilizing low-grade energy sources: a review. Energy and buildings, 42(10), 1567-1581. https://doi.org/10.1016/j.enbuild.2010.05.002
  • Yang, M. (2014). Energy consumption analysis and energy-saving air conditioning technology application of commercial complexes in hot summer and cold winter regions Harbin Institute of Technology].
  • Yang, Y., & Chen, S. (2024). Comprehensive thermal performances study on fin-enhanced thermo-activated building envelopes with anisotropic heat injection capacity. Energy Conversion and Management, 300, 117933. https://doi.org/10.1016/j.enconman.2023.117933
  • Yang, Y., Chen, S., Chang, T., Ma, J., & Sun, Y. (2021). Uncertainty and global sensitivity analysis on thermal performances of pipe-embedded building envelope in the heating season. Energy Conversion and Management, 244, 114509. https://doi.org/10.1016/j.enconman.2021.114509
  • Ye, M., Serageldin, A. A., Radwan, A., Sato, H., & Nagano, K. (2021). Thermal performance of ceiling radiant cooling panel with a segmented and concave surface: Laboratory analysis. Applied Thermal Engineering, 196, 117280. https://doi.org/10.1016/j.applthermaleng.2021.117280 Yi, J. (2005). Energy consumption status of buildings in China and effective energy-saving methods. Heating Ventilating & Air Conditioning, 35(5), 11. https://doi.org/10.3969/j.issn.1002-8501.2005.05.007

A comparative study on the applicability of the solar energy-powered embedded pipe envelope system in different envelopes

Yıl 2025, Cilt: 45 Sayı: 2, 162 - 171, 30.10.2025
https://doi.org/10.47480/isibted.1618182

Öz

This study compares the heating efficiency of the Solar Energy-powered Embedded Pipe Envelope System (SEPES) in various building envelopes using a novel simulation model developed with TRNSYS. The evaluation includes indoor air temperature, inlet and outlet water temperatures in walls, internal surface temperatures of envelopes, and heating energy consumption across six different SEPES installations. Key findings include: 1) SEPES significantly improves indoor temperatures during cold winters in Harbin, with ceiling installations increasing temperatures by up to 8.4℃, and strategic placements optimizing warmth and energy efficiency; 2) Water temperature in SEPES pipes indicates heating capacity, with the highest temperatures in east and west wall installations; 3) Ceiling-embedded pipes perform best in blocking heat loss, with surface temperatures ranging from 7.42℃ to 11.59℃; 4) SEPES installations significantly reduce daily heat loads, with ceiling installations achieving the highest energy-saving rate of 49.7%. Overall, ceiling installations are most effective, followed by the north wall, floor, south wall, east wall, and west wall.

Destekleyen Kurum

Universiti Malaya

Proje Numarası

GPF005A-2023

Teşekkür

The authors are grateful for the financial support of the Research University (RU) Grant - Faculty Program (Grant No. GPF005A-2023) and the Chongqing Science and Technology Commission, China (No. CSTB2022NSCQ-MSX1019)

Kaynakça

  • Chen, H., Yang, L., & Chen, W. (2020). Modelling national, provincial and city-level low-carbon energy transformation pathways. Energy Policy, 137, 111096. https://doi.org/10.1016/j.enpol.2019.111096
  • D’Antoni, M., & Saro, O. (2013). Energy potential of a Massive Solar-Thermal Collector design in European climates. Solar energy, 93, 195-208. https://doi.org/10.1016/j.solener.2013.04.011
  • Feng, J., Schiavon, S., & Bauman, F. (2016). New method for the design of radiant floor cooling systems with solar radiation. Energy and Buildings, 125, 9-18. https://doi.org/10.1016/j.enbuild.2016.04.048
  • Guo, S., Yan, D., Hu, S., & Zhang, Y. (2021). Modelling building energy consumption in China under different future scenarios. Energy, 214, 119063. https://doi.org/10.1016/j.energy.2020.119063
  • He, Y., Zhou, H., & Fahimi, F. (2022). Modeling and demand-based control of responsive building envelope with integrated thermal mass and active thermal insulations. Energy and Buildings, 276, 112495. https://doi.org/10.1016/j.enbuild.2022.112495
  • Jiang, S., Li, X., Lyu, W., Wang, B., & Shi, W. (2020). Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline. Journal of Building Engineering, 31, 101435. https://doi.org/10.1016/j.jobe.2020.101435
  • Jobli, M. I., Yao, R., Luo, Z., Shahrestani, M., Li, N., & Liu, H. (2019). Numerical and experimental studies of a Capillary-Tube embedded PCM component for improving indoor thermal environment. Applied Thermal Engineering, 148, 466-477. https://doi.org/10.1016/j.applthermaleng.2018.10.041
  • Klein, S. A. (2018). Calculation of Flat-Plate Collector Loss Coefficients. Renewable Energy. https://doi.org/10.4324/9781315793245-69
  • Krzaczek, M., Florczuk, J., & Tejchman, J. (2019). Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied energy, 254, 113711. https://doi.org/10.1016/j.apenergy.2019.113711
  • Krzaczek, M., & Kowalczuk, Z. (2011). Thermal Barrier as a technique of indirect heating and cooling for residential buildings. Energy and Buildings, 43(4), 823-837. https://doi.org/10.1016/j.enbuild.2010.12.002
  • Li, N., & Chen, Q. (2019). Experimental study on heat transfer characteristics of interior walls under partial-space heating mode in hot summer and cold winter zone in China. Applied Thermal Engineering, 162, 114264. https://doi.org/10.1016/j.applthermaleng.2019.114264
  • Ma, P., Wang, L.-S., & Guo, N. (2014). Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower. Applied energy, 127, 172-181. https://doi.org/10.1016/j.apenergy.2014.04.031
  • Shen, C., & Li, X. (2017). Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season. Energy and buildings, 138, 318-331. https://doi.org/10.1016/j.enbuild.2016.12.064
  • Shen, C., Li, X., & Yan, S. (2017). Numerical study on energy efficiency and economy of a pipe-embedded glass envelope directly utilizing ground-source water for heating in diverse climates. Energy Conversion and Management, 150, 878-889. https://doi.org/10.1016/j.enconman.2017.04.063
  • Shen, J., Wang, Z., Luo, Y., Jiang, X., Zhao, H., Cui, D. e., & Tian, Z. (2022). Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering, 59, 105123. https://doi.org/10.1016/j.jobe.2022.105123
  • Su, X., Zhang, L., Liu, Z., Luo, Y., Lian, J., & Luo, Y. (2019). A computational model of an improved cooling radiant ceiling panel system for optimization and design. Building and Environment, 163, 106312. https://doi.org/10.1016/j.buildenv.2019.106312
  • Sun, H., Wu, Y., Lin, B., Duan, M., Lin, Z., & Li, H. (2020). Experimental investigation on the thermal performance of a novel radiant heating and cooling terminal integrated with a flat heat pipe. Energy and Buildings, 208, 109646. https://doi.org/10.1016/j.enbuild.2019.109646
  • Wang, L., Onn, C. C., Chew, B. T., Li, W., & Li, Y. (2024). Numerical Study of the Solar Energy-Powered Embedded Pipe Envelope System. Buildings, 14(3), 613. https://doi.org/10.3390/buildings14030613
  • Xie, J.-l., Zhu, Q.-y., & Xu, X.-h. (2012). An active pipe-embedded building envelope for utilizing low-grade energy sources. Journal of Central South University, 19(6), 1663-1667. https://doi.org/10.1007/s11771-012-1190-3
  • Xu, K., Xu, X., & Yan, T. (2023). Performance evaluation of a pipe-embedded phase change material (PE-PCM) roof integrated with solar collector. Journal of Building Engineering, 71, 106582. https://doi.org/10.1016/j.jobe.2023.106582
  • Xu, X., Wang, S., Wang, J., & Xiao, F. (2010). Active pipe-embedded structures in buildings for utilizing low-grade energy sources: a review. Energy and buildings, 42(10), 1567-1581. https://doi.org/10.1016/j.enbuild.2010.05.002
  • Yang, M. (2014). Energy consumption analysis and energy-saving air conditioning technology application of commercial complexes in hot summer and cold winter regions Harbin Institute of Technology].
  • Yang, Y., & Chen, S. (2024). Comprehensive thermal performances study on fin-enhanced thermo-activated building envelopes with anisotropic heat injection capacity. Energy Conversion and Management, 300, 117933. https://doi.org/10.1016/j.enconman.2023.117933
  • Yang, Y., Chen, S., Chang, T., Ma, J., & Sun, Y. (2021). Uncertainty and global sensitivity analysis on thermal performances of pipe-embedded building envelope in the heating season. Energy Conversion and Management, 244, 114509. https://doi.org/10.1016/j.enconman.2021.114509
  • Ye, M., Serageldin, A. A., Radwan, A., Sato, H., & Nagano, K. (2021). Thermal performance of ceiling radiant cooling panel with a segmented and concave surface: Laboratory analysis. Applied Thermal Engineering, 196, 117280. https://doi.org/10.1016/j.applthermaleng.2021.117280 Yi, J. (2005). Energy consumption status of buildings in China and effective energy-saving methods. Heating Ventilating & Air Conditioning, 35(5), 11. https://doi.org/10.3969/j.issn.1002-8501.2005.05.007
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sürdürülebilir Tasarım
Bölüm Araştırma Makalesi
Yazarlar

Linfeng Wang 0009-0002-0419-1871

Chiu Chuen Onn 0000-0002-5093-5651

Bee Teng Chew 0000-0002-2101-9638

Wuyan Li 0009-0004-9514-1160

Yongcai Li 0000-0002-2027-9534

Proje Numarası GPF005A-2023
Gönderilme Tarihi 16 Ocak 2025
Kabul Tarihi 11 Temmuz 2025
Yayımlanma Tarihi 30 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 45 Sayı: 2

Kaynak Göster

APA Wang, L., Onn, C. C., Chew, B. T., … Li, W. (2025). A comparative study on the applicability of the solar energy-powered embedded pipe envelope system in different envelopes. Isı Bilimi ve Tekniği Dergisi, 45(2), 162-171. https://doi.org/10.47480/isibted.1618182