Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı İklim Tiplerinde BIM/BES Yöntemleri Kullanılarak Bina İşlevleri ve Enerji Performansı Arasındaki İlişkinin İncelenmesi

Yıl 2025, Cilt: 45 Sayı: 2, 172 - 192, 30.10.2025
https://doi.org/10.47480/isibted.1622706

Öz

Binaların enerji talebi üzerinde birçok tasarım parametresi etkili olmaktadır. Bina enerji performansı üzerine yapılan araştırmalar genellikle binaların fiziksel tasarım parametreleri ve teknik özelliklerine odaklanırken, kullanıcıların davranışları, faaliyetleri, kullanım süreleri ve yoğunlukları da enerji performansını etkileyen kritik faktörlerdir. Binalar, mekan içinde gerçekleştirilecek faaliyetlere uygun işlevlerle tasarlanmalı ve kullanıcı ihtiyaçları tasarım sürecinde göz önünde bulundurulmalıdır. Bu çalışmada, bina enerji performansındaki değişimler, 9 farklı bina işlevi ve 3 farklı iklim türüne göre analiz edilmiştir. BIM-BES yöntemi kullanılarak bina enerji modelleri oluşturulmuş ve DesignBuilder yazılımı ile enerji simülasyonları gerçekleştirilmiştir. Simülasyon sonuçları grafikler aracılığıyla analiz edilmiş ve enerji performansı özellikleri karşılaştırılmıştır. Enerji performansı ile kullanıcıya bağlı parametreler arasındaki doğrusal ilişkiyi incelemek için Excel'de regresyon analizleri yapılmış, ardından Python'da hazırlanan korelasyon matrisleri ile sonuçlar değerlendirilmiştir. Bulgular, iklim parametreleri ve bina işlevlerindeki farklılıklardan kaynaklanan enerji farklılıklarının %80'i aşabileceğini göstermiştir. Bu sonuçlar, yerel bağlama uygun tasarımın önemini ve tasarım sürecinde kullanıcı ihtiyaçlarının dikkate alınmasının gerekliliğini vurgulamaktadır. Çalışma, bina enerji performansını iyileştirmek için kullanıcı odaklı yaklaşımların gerekliliğini sayısal verilerle ortaya koymaktadır.

Kaynakça

  • Alhammad, M. Eames M. Vinai R. 2024. Enhancing Building Energy Efficiency through Building Information Modeling (BIM) and Building Energy Modeling (BEM) Integration: A Systematic Review. Buildings, 14, 581.
  • Alhuwayil W. K. Almaziad F. A. & Mujeebu M. A. (2023). Energy performance of passive shading and thermal insulation in multistory hotel building under different outdoor climates and geographic locations. Case Studies in Thermal Engineering, 45, 102940.
  • Alpa R. (2010) Basit Doğrusal Regresyon ..zümlemesi. Spor, Sağlık ve eğitim Bilimlerinden Örneklerle Uygulamalı İstatistik ve Geçerlik- Güvenirlik. Detay Yayıncılık, Ankara, 2010, 285-304.
  • Al Sehrawy A. Amoudi O. Tong M. Callaghan N. A (2021) review of the challenges to integrating BIM and building sustainability assessment. In Proceedings of the Central European Symposium on Thermophysics, Kazimierz Dolny, Poland, 1–3 September 2021.
  • Alsharif R. (2019). (Swinburne University of Technology). A review on the challenges of BIM-based BEM automated application in AEC industry. Unpublished Work, 1–40.
  • Alwetaishi M. (2022). Energy performance in residential buildings: Evaluation of the potential of building design and environmental parameter. Ain Shams Engineering Journal, 13(4), 101708.
  • As M. & Bilir T. (2023). Enhancing energy efficiency and cost-effectiveness while reducing CO2 emissions in a hospital building. Journal of Building Engineering, 78, 107792.
  • Aslan S. Akyol F. N. Dibooğlu S. Kantarcı B. & Serim D. (2019). Sağlık alanında kullanılan ilişki katsayıları.
  • Ayman R. Alwan, Z. Mclntyre, L. (2018). Factors motivating the adoption of BIM- based sustainability analysis. In: The International Seeds Conference 2018: Sustainable Ecological Engineering Design for Society.
  • Bai X. Ma, W. Huang, J. Liang, C., & Zhang X. (2024). Performance assessment and improvement of district cooling system: A case study of enhancing energy efficiency of hospital buildings. Case Studies in Thermal Engineering, 56, 104187.
  • Bangwal D. Suyal J. & Kumar R. (2022). Hotel building design, occupants’ health and performance in response to COVID 19. International journal of hospitality management, 103, 103212.
  • Banti N. (2024). Existing industrial buildings–A review on multidisciplinary research trends and retrofit solutions. Journal of Building Engineering, 108615.
  • Banti N. & Krawczyk D. A. (2024). Integrating energy simulations and Analytical Hierarchy Process procedure in multi-criteria evaluation of heating systems for industrial buildings. Journal of Building Engineering, 110203.
  • Bakry M. S. Hamdy M. Mohamed A. & Elsayed K. (2022). Energy saving potential in open museum spaces: A comparative hygrothermal microclimates analysis. Building and Environment, 225, 109639.
  • Bekar İ. Kutlu I. & Ergün R. (2024). Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3), 550-573.
  • Bisu D. Y. Kuhe A. Ibrahim J. S. Edeoja A. O. & Gonah W. S. Survival of the Nigerian Restaurant in The Face of Failing Energy Supply: Implications for Policy.
  • Borowski M. (2022). Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan. Energies, 15(17), 6332.
  • Cao W. Yu J. Chao M. Wang J. Yang S. Zhou M. & Wang M. (2023). Short-term energy consumption prediction method for educational buildings based on model integration. Energy, 283, 128580.
  • Choi J. Lee S. (2023). A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis. Sustainability 2023, 15, 1797.
  • Choi J. Y. Nam J. Yuk H. Yun B. Y. Lee S. Lee J. K. & Kim S. (2023). Proposal of retrofit of historic buildings as cafes in Korea: Recycling biomaterials to improve building energy and acoustic performance. Energy and Buildings, 287, 112988.
  • Choi J. Peters M. Mueller R.O. (2010) Correlation analysis of ordinal data: from Pearson’s r to Bayesian polycoric correlation, Asia Pacific Educ. Rev., 2010, 11:459-466, S:460. Chong A. Augenbroe G. Yan D. (2021). Occupancy data at different spatial resolutions: Building energy performance andmodel calibration. Applied Energy. 286 (2021) 116492.
  • Cichowicz R. & Jerominko T. (2023). Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe). Energy, 282, 128393.
  • Cozza S. Chambers, J. Patel M.K. (2020). Measuring the Thermal Energy Performance Gap of Labelled Residential Buildings in Switzerland. Energy Policy, 137, 111085.
  • Cozza S. Chambers J. Deb C. Scartezzini J.-L. Schlüter A.(2020). Patel, M.K. Do Energy Performance Certificates Allow Reliable Predictions of Actual Energy Consumption and Savings? Learning from the Swiss National Database. Energy Build, 224, 110235.
  • Çetin M. (2024). Entropi Ekseninde Orman Yangınları Fenomeni Üzerine Bir İnceleme. Journal of Anatolian Geography, 1(1), 1-16.
  • Dabanlis G. Loupa G. Tsalidis G. A. Kostenidou E.,& Rapsomanikis S. (2023). The Interplay between Air Quality and Energy Efficiency in Museums, a Review. Applied Sciences, 13(9), 5535.
  • Dawson B, Trapp RG. (2001). Statistical Methods for Multiple Variables. Basic & Clinical Biostatistics. Lange Medical books/McGraw Hill Medical Publishing Division, USA, 236-242.
  • de la Hoz-Torres M. L. Aguilar A. J. Ruiz D. P. & Martínez-Aires M. D. (2024). An investigation of indoor thermal environments and thermal comfort in naturally ventilated educational buildings. Journal of Building Engineering, 84, 108677.
  • Del Regno N. Gigante A. Ruggiero S. Tariello F. & Vanoli G. P. (2023). Energy efficiency in hospitals: comparative analysis of different HVAC configurations. Advances in Building Energy Research, 17(5), 554-577.
  • Dena A. J. G. Hípola M. D. C. G. & Bandera C. F. (2024). Optimization Testing for the Modeling and Characterization of Three-Dimensional Elements to Enhance Interoperability from Building Information Modeling (BIM) to Building Energy Modeling (BEM). Energy and Buildings, 317, 114394.
  • Deng Z. Javanroodi K. Nik V. M. & Chen Y. (2023, September). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. In Building Simulation (Vol. 16, No. 9, pp. 1629-1643). Beijing: Tsinghua University Press.
  • DesignBuilder Software Ltd. DesignBuilder User Guide and tuturials. Access Date:01.03.2025. https://designbuilder.co.uk/training/tutorials
  • Dimoudi A. Kantzioura A. Toumpoulides P. Zoras S. Serghides D. Dimitriou S. ... & Dorri A. (2022, February). The energy performance of hospital buildings in the South Balkan region: The prospects for zero-energy hospitals. In Sustainable Energy Development and Innovation: Selected Papers from the World Renewable Energy Congress (WREC) 2020 (pp. 757-763). Cham: Springer International Publishing.
  • Dyussembekova N. Temirgaliyeva N. Umyshev D. Shavdinova M. Schuett R. & Bektalieva D. (2022). Assessment of Energy Efficiency Measures’ Impact on Energy Performance in the Educational Building of Kazakh-German University in Almaty. Sustainability, 14(16), 9813.
  • Ekhaese E. N. Mohammed I. A. & Akindoyin P. O. (2024). Bioclimatic design strategies and energy efficiency in an orthopaedic hospital in Nigerian cities: A cross-sectional study. Journal of Infrastructure, Policy and Development, 8(7), 2736.
  • ElSharkawy M. F. & Ibrahim, O. A. (2022). Impact of the restaurant chimney emissions on the outdoor air quality. Atmosphere, 13(2), 261.
  • Erdenizci E. & Dağlı U. U. (2023). The Role Of Semi-Public Spaces Of Eating-Drinking Establishments In The Community Life Of Cypriot Maronites Facing Extinction. METU Journal of the Faculty of Architecture, 39(2).
  • Ereser E. & Beyhan F. (2023). A Study on the Applicability of Energy Efficient Design Approaches in Airport Terminal Buildings. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 11(3), 441-465.
  • Fernandes M. S. Coutinho B. & Rodrigues E. (2024). The impact of climate change on an office building in Portugal: Measures for a higher energy performance. Journal of Cleaner Production, 445, 141255.
  • Gigliarelli E. 2021. State of the Art Analysis on Building Performance Simulation on Historic Performance Simulation on Historic Buildings Date : Prepared by : Status : Version : Authors.
  • Gu X. Xie J. Huang C. & Liu J. (2022). A spatiotemporal passenger distribution model for airport terminal energy simulation. Indoor and Built Environment, 31(7), 1834-1857.
  • Gu X. Xie J. Huang C. Ma K. & Liu J. (2022). Prediction of the spatiotemporal passenger distribution of a large airport terminal and its impact on energy simulation. Sustainable Cities and Society, 78, 103619.
  • Guerra-Santin O. (2010). Itard, L. Occupants’ Behaviour: Determinants and Effects on Residential Heating Consumption. Build. Res. Inf. 38, 318–338.
  • Gunasegaran M. K. Hasanuzzaman M. Tan C. Bakar A. H. A. & Ponniah V. (2023). Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants. Energies, 16(20), 7145.
  • Gunasegaran M. K. Hasanuzzaman M. Tan C. Bakar A. H. A. & Ponniah V. (2022). Energy analysis, building energy index and energy management strategies for fast-food restaurants in Malaysia. Sustainability, 14(20), 13515.
  • Gupta G. Mathur S. Mathur J. & Nayak B. K. (2023). Comparison of energy-efficiency benchmarking methodologies for residential buildings. Energy and Buildings, 285, 112920.
  • Han F. Liu B. Wang Y. Dermentzis G. Cao X. Zhao L. ... & Feist W. (2022). Verifying of the feasibility and energy efficiency of the largest certified passive house office building in China: A three-year performance monitoring study. Journal of Building Engineering, 46, 103703.
  • Han Y. Long Z. J. Wen J. P. Sun Z. Li D. & Li K. (2023). Energy Consumption Simulation and Economic Study on the Insulation Layer Thickness of Desert Passenger Station Building. Eng. Adv, 3, 1-10.
  • Hasol D. (2008). Ansiklopedik Mimarlık Sözlüğü. 10. Basım, Yem Yayın, İstanbul, 313.
  • Heydarian A. McIlvennie C. Arpan L. Yousefi S. Syndicus M. Schweiker M. et al. (2020). What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories. Build Environ, 106928.
  • Hijazi M. Kensek K. Konis K. (2015). Bridging the gap: Supporting data transparency from BIM to BEM. In Proceedings of the ARCC 2015 Conference: Future of Architectural Research, Chicago, IL, USA, 6–9 April, 149–156.
  • Hong T. Taylor-Lange S. C. D'Oca S. Yan D. Corgnati S. (2016). Advances in Research and Applications of Energy-Related Occupant Behavior in Buildings. Energy and Buildings.
  • Hong T. Yan D. D’Oca S. Chen C. (2017). Ten questions concerning occupant behavior in buildings: The big picture. Building and Environment.
  • Hu T. Shang S. Xie J. Ji Y. Xue P. & Zhang N. (2024). Infectious diseases prevention and control with reduced energy consumption in an airport. Energy and Built Environment.
  • IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. (2017). Energy Build, 152:124–36.
  • IEA, Buildings - Sectorial overview - 2021 Tracking report, (2022). https://www. iea.org/reports/buildings (accessed 23 temmuz, 2023).
  • Ibrahim H. Elsayed M. S. Moustafa W. S. & Abdou H. M. (2023). Functional analysis as a method on sustainable building design: A case study in educational buildings implementing the triple bottom line. Alexandria Engineering Journal, 62, 63-73.
  • Islam M. H. Safayet M. A. & Al Mamun A. (2022). Building performance analysis for optimizing the energy consumption of an educational building. International Journal of Building Pathology and Adaptation.
  • Jaouaf S. Bensaad B. & Habib M. (2024). Passive strategies for energy-efficient educational facilities: Insights from a mediterranean primary school. Energy Reports, 11, 3653-3683.
  • Krarti M. (2022). Energy performance of control strategies for smart glazed windows applied to office buildings. Journal of Building Engineering, 45, 103462.
  • Ke Q. & White M. (2024). Does Energy Performance Rating Affect Office Rents? A Study of the UK Office Market. Journal of Sustainable Real Estate, 16(1), 2356715.
  • Khodeir L. (2017). Green BIM in heritage building: Integrating building energy models (BEM) with building information modelling (BIM) for sustainable retrofit of heritage buildings. In Heritage Building Information Modelling, 1st ed.; Arayici, Y., Counsell, J., Mahdjoubi, L., Nagy, G., Hawas, S., Dweidar, K., Eds.; Routledge: London, UK, 203–217.
  • Kılınç S. (2013).Doğrusal Regresyon analizi. Journal of Mood Disorders 2013;3(2):90-2.
  • Kim K. H. Chae C. U. & Cho D. (2022). Development of an assessment method for energy performance of residential buildings using G-SEED in South Korea. Journal of Asian Architecture and Building Engineering, 21(1), 133-144.
  • Kirme S. K. & Kapse V. S. (2024). A comprehensive review of residential building energy efficiency measures in India. Energy and Buildings, 114537.
  • Lefebvre H. (1995). The Production of Space, Translated by Donald Nicholson Smith. 4th Edition, Blackwell, Oxford, 1995,s.3-6.
  • Lim T. Yim W. S. & Kim D. D. (2022). Analysis of the thermal and cooling energy performance of the perimeter zones in an office building. Buildings, 12(2), 141.
  • Lin L. Chen G. Liu X. Liu X. & Zhang T. (2023). Characterizing cooling load in multi-area airport terminal buildings: Clustering and uncertainty analysis for energy flexibility. Journal of Building Engineering, 79, 107797.
  • Liu X. Ding Z.;Li X. Xue Z. (2023). Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database. Int. J. Environ. Res. Public Health 2023, 20, 3083.
  • Liu Y. Wang W. Huang Y. Song J. & Zhou, Z. (2024). Energy Performance Analysis and Study of an Office Building in an Extremely Hot and Cold Region. Sustainability, 16(2), 572.
  • Loga T. Diefenbach N. Born R. (2015). Deutsche Gebäudetypologie: Beispielhafte Maßnahmen Zur Verbesserung Der Energieeffizienz von Typischen Wohngebäuden; 2nd expanded ed.; Institut Wohnen und Umwelt: Darmstadt, Germany, ISBN 978-3-941140-47-9.
  • Ma K. Wang D. Sun Y. Wang W. & Gu X. (2024). Model predictive control for thermal comfort and energy optimization of an air handling unit system in airport terminals using occupant feedback. Sustainable Energy Technologies and Assessments, 65, 103790.
  • Ma, J. Inoue T. Fang Q. Li K. & Li M. (2023). A Study on Optimal Opening Configuration for Art Museum Exhibition Space Considering Daylight Performance, Indoor Thermal Comfort, and Energy Consumption. Sustainability, 15(23), 16431.
  • Majcen D. (2016). Predicting Energy Consumption and Savings in the Housing Stock. A Performance Gap Analysis in the Netherlands; Delft University of Technology, A+BE Architecture and the Built Environment, OTB: Delft, The Netherlands.
  • MGM(2025). https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=IZMIR. (Access on: 5 March 5, 2025).
  • Nkini S. Nuyts E. Kassenga G. Swai O. & Verbeeck G. (2023). Comparative analysis of the energy performance in green and non-green office buildings in Dar Es Salaam, Tanzania. Energy and Buildings, 293, 113202.
  • O’Hegarty R. Amedeo G. & Kinnane O. (2024). The impact of compromised insulation on building energy performance. Energy and Buildings, 316, 114337.
  • Özer Yaman G. Oral M. Dinçer K. & Canan F. (2023). Rule-Based Mamdani-Type Fuzzy Modelling of Buildings Annual Heating Energy Need in Design of Industrial Buildings in Konya Turkey.
  • Özgen E. (2020). Sağlık Yapıları İç Mekan Tasarımı: Kuram ve Uygulama Pratikleri Bağlamında Tartışma. Mimarlık ve Yaşam Dergisi, Journal of Architecture and Life, 5(2), 603-614.
  • Özkan A. (2017). Günümüz Türk İç Mekan Tasarımcıları ve Tasarım Anlayışları İç Mekan Tasarımı Kuram ve Yöntemleri Işığında Bir Yaklaşım, 1. Basım, Lambert Academic Publishing, Germany, 3-10.
  • Özlem A. Ashrafian T. (2022). Evaluation of Building Retrofitting Alternatives towards Zero Energy School Building in Turkey 1-8.
  • Öztuna D. Elhan A. H. Kurşun N. Sağlık Araştırmalarında Kullanılan İlişki Katsayıları, Turkiye Klinikleri J Med Sci 2008, 28:160-165.
  • Palani H. & Karatas A. (2022). Holistic approach for reducing occupants’ energy consumption in hotel buildings. Journal of Cleaner Production, 365, 132679.
  • Pang J. Fan Z. Yang M. Liu J. Zhang R. Wang W. & Sun L. (2023). Effects of complex spatial atrium geometric parameters on the energy performance of hotels in a cold climate zone in China. Journal of Building Engineering, 72, 106698.
  • Patil S. & Kini P. G. (2024). Calibration of simulation model to analyze hospital building energy performance. Energy and Buildings, 313, 114242.
  • Patterson M. Singh P. & Cho H. (2022). The current state of the industrial energy assessment and its impacts on the manufacturing industry. Energy Reports, 8, 7297-7311.
  • Permana I. Wang F. Agharid A. P. Rakshit D. & Luo J. (2023). Energy Consumption Analysis Using Weighted Energy Index and Energy Modeling for a Hotel Building. Buildings, 13(4), 1022.
  • Piras G. & Muzi F. (2024). Energy transition: semi-automatic BIM tool approach for elevating sustainability in the maputo natural history museum. Energies, 17(4), 775.
  • Prizeman O. Boughanmi M. & Pezzica C. (2022). Carnegie libraries of Britain: Assets or liabilities? Managing altering agendas of energy efficiency for early 20th century heritage. Public Library Quarterly, 41(1), 43-82.
  • Sahin C.D. Tunc oku S.S. Arsan Z.D. Erikksson P. Akkurt G.G. (2016). A Case Study for Energy Efficient Retrofitting of Historical Buildings, 8-10.
  • Saiful I. & Noranai Z. (2024). Improving Energy Consumption in A Commercial Restaurant. Journal of Design for Sustainable and Environment, 6(1), 49-53.
  • Seo J. Kim S. Lee S. Jeong H. Kim T. & Kim J. (2022). Data-driven approach to predicting the energy performance of residential buildings using minimal input data. Building and Environment, 214, 108911.
  • Serghides D. Dimitriou S. & Kyprianou I. (2022, February). Mediterranean Hospital Energy Performance Mapping: The Energy Auditing as a Tool Towards Zero Energy Healthcare Facilities. In Sustainable Energy Development and Innovation: Selected Papers from the World Renewable Energy Congress (WREC) 2020 (pp. 419-429). Cham: Springer International Publishing.
  • Seyis S. (2022). Comparative study for BIM-based LEED industrial building and non-LEED industrial building. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1081-1098.
  • Sheskin D. (2011). Handbook of Parametric and Nonparametric Statistical Procedures Test, Chapman and Hall/CRC, Fifth Edition,800.
  • Sholanke A. B. & Oyeyipo F. J. (2023). Appraisal of Lighting Strategies for Achieving Environmental Sustainability in Selected Art Museums and Galleries in Nigeria.
  • Shukri M. A. M. Jailani J. & Hauashdh A. (2022). Benchmarking the energy efficiency of higher educational buildings: A case study approach. International Journal of Energy Economics and Policy, 12(2), 491-496.
  • Silva B. V. Holm-Nielsen J. B. Sadrizadeh S. Teles, M. P. Kiani-Moghaddam M. & Arabkoohsar A. (2023). Sustainable, green, or smart? Pathways for energy-efficient healthcare buildings. Sustainable Cities and Society, 105013.
  • Sözen M. & Tanyeli U. (2018). Sanat Kavramlar ve Terimler Sözlüğü, 18. Basım, Remzi Kitabevi, İstanbul, 203.
  • Sukarti S. B. Sulaima M. F. Kadir A. F. A. Shamsor M. H. & Yao S. W. (2024). Advancing industrial building energy measurement and verification (M&V) with deep learning: Evaluating data size and feature selection impact. Energy and Buildings, 114457.
  • Tachir G. Altınöz M. & Mıhlayanlar E. (2024). Energy Consumption at Accommodation Buildings: A Case Study of a Boutique Hotel-Abdera. Kocaeli Journal of Science and Engineering, 7(1), 71-80.
  • Tamer T. Dino I. G. Baker D. K. & Akgül C. M. (2023). Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy and Buildings, 298, 113482.
  • Tan H. & Dang R. (2022). Review of lighting deterioration, lighting quality, and lighting energy saving for paintings in museums. Building and Environment, 208, 108608.
  • Tomrukçu G. Ashrafian T. (2022). Energy-efficient building design under climate change adaptation process: a case study of a single-family house. Int. J. Build. Pathol. Adapt.
  • Tong J. Wang Y. Qiu Z. Zhang J. Li S. Li C. ... & Chen L. (2024). Thermal performance of phase-change wall of a hotel building under hot-summer and cold-winter climate. Journal of Asian Architecture and Building Engineering, 1-14
  • Ulu M. (2017). State of the Art Survey for Energy-Efficient Retrofit of Historic State of the Survey Energy- Efficient Retrofit of Historic Residential.
  • Turan T. Makine Öğrenmesi Algoritmalari ile Su Kalitesi ve İçilebilirlik Tahmini. Uluborlu Mesleki Bilimler Dergisi, 6(2), 65-80.
  • Türk Standardı TSE 825, Binalarda Isı Yalıtım Kuralları. Türk Standartları Enstitüsü, 2013, Ankara.
  • Uddin M. N. Ruva I. J. Syed, M. A. Hossain D. Akter R. Tamanna N. ... & Saka A. (2022). Occupant centric energy renovation strategy for hospital and restaurant building envelop using distinct modellingtools: A case study from low-income cultural context. Energy and Buildings, 272, 112338.
  • Uşma G. (2021). Enerji Etkin Konutlarda Kullanıcı Memnuniyetinin Değerlendirilmesine Yönelik Bir Model Geliştirilmesi". Yıldız Teknik Üniversitesi.
  • Xu J. 2024. Research on energy-saving strategies in the architectural design of the Eastern Railway in the era of artificial intelligence. Applied Mathematics and Nonlinear Sciences, 9(1).
  • van den Brom P. Meijer A. Visscher H. (2018). Performance Gaps in Energy Consumption: Household Groups and Building Characteristics. Build. Res. Inf. 46, 54–70.
  • Vaisi S. Firouzi M. & Varmazyari P. (2023). Energy benchmarking for secondary school buildings, applying the Top-Down approach. Energy and Buildings, 279, 112689.
  • Vandenbogaerde L. Verbeke S. & Audenaert A. (2023). Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings. Journal of Building Engineering, 107233.
  • Vaz C. F. Maciel A. C. F. Piccello I. & Araujo A. L. D. (2024). Environmental Sustainability in Traditional University Libraries: Contributions from BIM/BES Integration to the Thermal Performance and Books Conservation. In The Contribution of Universities Towards Education for Sustainable Development (pp. 145-167). Cham: Springer Nature Switzerland.
  • Vestfal P. & Seduikyte L. (2024). Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM. Buildings, 14(7), 2007.
  • Verstina N. Solopova N. Taskaeva N. Meshcheryakova T. & Shchepkina N. (2022). A new approach to assessing the energy efficiency of industrial facilities. Buildings, 12(2), 191.
  • Wang, X. Yuan, J. You, K. Ma, X. Li, Z. (2023). Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and ColdWinter Zone in China. Sustainability 2023, 15, 1575.
  • Wang Z. Shen H. Deng G. Liu X. & Wang D. (2024). Measured performance of energy efficiency measures for zero-energy retrofitting in residential buildings. Journal of Building Engineering, 91, 109545.
  • Webber C.A. 2001. Field surveys of office equipment operating patterns.
  • W.G.B.C. Webpage, Bringing embodied carbon upfront, http://tinyurl .com / 5974d7z6, 2022. (Accessed 20 February 2024).
  • W.G.B.C. Webpage, Bringing embodied carbon upfront, http://tinyurl .com / 5974d7z6, 2022. (Accessed 23 Temmuz 2024).
  • Yaman, G. Ö. (2025). Determination of Optimum Passive Design Parameters for Industrial Buildings in Different Climate Zones Using an Energy Performance Optimization Model Based on an Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Sustainability, 17(6), 2357.
  • Yan D. O’Brien L. Hong T. Feng X. Gunay B. Tahamasebi F. Mahdavi A. (2015). Occupant behavior modeling for building performance simulation: current state and future challenges. Energy and Buildings.
  • Yang Y. Pan Y. Zeng F. Lin Z. Li C. (2022). A gbxml reconstruction workflow and tool development to improve the geometric interoperability between bim and bem, Buildings, 12.
  • Yildiz O. F. Yilmaz M. & Celik A. (2022). Reduction of energy consumption and CO2 emissions of HVAC system in airport terminal buildings. Building and Environment, 208, 108632.
  • Yoshino H. Hong T. Nord N. (2017) IEA EBC annex 53: Total energy use in buildings Analysis and evaluation methods. Energy and Buildings, 152, 124-136.
  • Yan D. O’Brien W. Hong T. Feng X. Gunay H. B. Tahmasebi F. et al. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build, 107:264–78.
  • Zhang J. Yuan C. Yang J. & Zhao L. (2024). Research on Energy Consumption Prediction Models for High-Rise Hotels in Guangzhou, Based on Different Machine Learning Algorithms. Buildings, 14(2), 356.
  • Zhou B. & Wang D. (2023). Integrated performance optimization of industrial buildings in relation to thermal comfort and energy consumption: A case study in hot summer and cold winter climate. Case Studies in Thermal Engineering, 46, 102991.
  • Url-1: https://www.serhatnews.com/vanda-toki-basvuru-tarih-ve-sartlari-belli-oldu
  • Url-2: https://www.haberturk.com/toki-mersin-de-hangi-ilcelere-konut-yapacak-mersin-toki-evleri-nerede-yapilacak-sartlari-neler-3520896
  • Url-3: https://www.gunebakis.com.tr/haber/12932019/toki-konutlari-icin-3-mahalle-taraniyor
  • Url-4: https://okul.com.tr/adana-seyhan-okullari?sector=devlet
  • Url-5: https://sivasataturkmtal.meb.k12.tr/icerikler/okulumuzu-taniyalim9721189.html
  • Url-6: https://nerminahmethasoglukizaihl.meb.k12.tr/icerikler/nermin-ahmet-hasoglu-kiz-anadolu-imam-hatip-lisesi-tarihce11829881.html.

Investigation of the Relationship Between Building Functions and Energy Performance Using BIM/BES Methods Across Different Climate Types

Yıl 2025, Cilt: 45 Sayı: 2, 172 - 192, 30.10.2025
https://doi.org/10.47480/isibted.1622706

Öz

Many design parameters influence the energy demand of buildings. While research on building energy performance typically emphasizes physical design parameters and the technical characteristics of buildings, the behavior, actions, duration, and intensity of use by occupants are also critical factors impacting energy performance. Buildings should be constructed with functions aligned to the intended actions within spaces, ensuring user needs are considered during the design process. In this study, the variation in building energy performance was analyzed based on 9 different building functions and 3 climate types. Building energy models were developed using the BIM-BES methodology, and energy simulations were conducted using DesignBuilder software. The simulation results were analyzed through graphs, and energy performance characteristics were compared. Regression analyses were performed in Excel to explore the linear relationship between energy performance and occupant-related parameters, while correlation matrices were prepared and analyzed in Python. The findings revealed energy differences exceeding 80% due to variations in climate parameters and building functions. These results emphasize the critical importance of location-specific design and the integration of user needs during the design phase. This study highlights the necessity of user-centered approaches to improve building energy performance, supported by numerical data.

Kaynakça

  • Alhammad, M. Eames M. Vinai R. 2024. Enhancing Building Energy Efficiency through Building Information Modeling (BIM) and Building Energy Modeling (BEM) Integration: A Systematic Review. Buildings, 14, 581.
  • Alhuwayil W. K. Almaziad F. A. & Mujeebu M. A. (2023). Energy performance of passive shading and thermal insulation in multistory hotel building under different outdoor climates and geographic locations. Case Studies in Thermal Engineering, 45, 102940.
  • Alpa R. (2010) Basit Doğrusal Regresyon ..zümlemesi. Spor, Sağlık ve eğitim Bilimlerinden Örneklerle Uygulamalı İstatistik ve Geçerlik- Güvenirlik. Detay Yayıncılık, Ankara, 2010, 285-304.
  • Al Sehrawy A. Amoudi O. Tong M. Callaghan N. A (2021) review of the challenges to integrating BIM and building sustainability assessment. In Proceedings of the Central European Symposium on Thermophysics, Kazimierz Dolny, Poland, 1–3 September 2021.
  • Alsharif R. (2019). (Swinburne University of Technology). A review on the challenges of BIM-based BEM automated application in AEC industry. Unpublished Work, 1–40.
  • Alwetaishi M. (2022). Energy performance in residential buildings: Evaluation of the potential of building design and environmental parameter. Ain Shams Engineering Journal, 13(4), 101708.
  • As M. & Bilir T. (2023). Enhancing energy efficiency and cost-effectiveness while reducing CO2 emissions in a hospital building. Journal of Building Engineering, 78, 107792.
  • Aslan S. Akyol F. N. Dibooğlu S. Kantarcı B. & Serim D. (2019). Sağlık alanında kullanılan ilişki katsayıları.
  • Ayman R. Alwan, Z. Mclntyre, L. (2018). Factors motivating the adoption of BIM- based sustainability analysis. In: The International Seeds Conference 2018: Sustainable Ecological Engineering Design for Society.
  • Bai X. Ma, W. Huang, J. Liang, C., & Zhang X. (2024). Performance assessment and improvement of district cooling system: A case study of enhancing energy efficiency of hospital buildings. Case Studies in Thermal Engineering, 56, 104187.
  • Bangwal D. Suyal J. & Kumar R. (2022). Hotel building design, occupants’ health and performance in response to COVID 19. International journal of hospitality management, 103, 103212.
  • Banti N. (2024). Existing industrial buildings–A review on multidisciplinary research trends and retrofit solutions. Journal of Building Engineering, 108615.
  • Banti N. & Krawczyk D. A. (2024). Integrating energy simulations and Analytical Hierarchy Process procedure in multi-criteria evaluation of heating systems for industrial buildings. Journal of Building Engineering, 110203.
  • Bakry M. S. Hamdy M. Mohamed A. & Elsayed K. (2022). Energy saving potential in open museum spaces: A comparative hygrothermal microclimates analysis. Building and Environment, 225, 109639.
  • Bekar İ. Kutlu I. & Ergün R. (2024). Importance performance analysis for sustainability of reused historical building: Mardin Sabanci City Museum and art gallery. Open House International, 49(3), 550-573.
  • Bisu D. Y. Kuhe A. Ibrahim J. S. Edeoja A. O. & Gonah W. S. Survival of the Nigerian Restaurant in The Face of Failing Energy Supply: Implications for Policy.
  • Borowski M. (2022). Hotel Adapted to the Requirements of an nZEB Building—Thermal Energy Performance and Assessment of Energy Retrofit Plan. Energies, 15(17), 6332.
  • Cao W. Yu J. Chao M. Wang J. Yang S. Zhou M. & Wang M. (2023). Short-term energy consumption prediction method for educational buildings based on model integration. Energy, 283, 128580.
  • Choi J. Lee S. (2023). A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis. Sustainability 2023, 15, 1797.
  • Choi J. Y. Nam J. Yuk H. Yun B. Y. Lee S. Lee J. K. & Kim S. (2023). Proposal of retrofit of historic buildings as cafes in Korea: Recycling biomaterials to improve building energy and acoustic performance. Energy and Buildings, 287, 112988.
  • Choi J. Peters M. Mueller R.O. (2010) Correlation analysis of ordinal data: from Pearson’s r to Bayesian polycoric correlation, Asia Pacific Educ. Rev., 2010, 11:459-466, S:460. Chong A. Augenbroe G. Yan D. (2021). Occupancy data at different spatial resolutions: Building energy performance andmodel calibration. Applied Energy. 286 (2021) 116492.
  • Cichowicz R. & Jerominko T. (2023). Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe). Energy, 282, 128393.
  • Cozza S. Chambers, J. Patel M.K. (2020). Measuring the Thermal Energy Performance Gap of Labelled Residential Buildings in Switzerland. Energy Policy, 137, 111085.
  • Cozza S. Chambers J. Deb C. Scartezzini J.-L. Schlüter A.(2020). Patel, M.K. Do Energy Performance Certificates Allow Reliable Predictions of Actual Energy Consumption and Savings? Learning from the Swiss National Database. Energy Build, 224, 110235.
  • Çetin M. (2024). Entropi Ekseninde Orman Yangınları Fenomeni Üzerine Bir İnceleme. Journal of Anatolian Geography, 1(1), 1-16.
  • Dabanlis G. Loupa G. Tsalidis G. A. Kostenidou E.,& Rapsomanikis S. (2023). The Interplay between Air Quality and Energy Efficiency in Museums, a Review. Applied Sciences, 13(9), 5535.
  • Dawson B, Trapp RG. (2001). Statistical Methods for Multiple Variables. Basic & Clinical Biostatistics. Lange Medical books/McGraw Hill Medical Publishing Division, USA, 236-242.
  • de la Hoz-Torres M. L. Aguilar A. J. Ruiz D. P. & Martínez-Aires M. D. (2024). An investigation of indoor thermal environments and thermal comfort in naturally ventilated educational buildings. Journal of Building Engineering, 84, 108677.
  • Del Regno N. Gigante A. Ruggiero S. Tariello F. & Vanoli G. P. (2023). Energy efficiency in hospitals: comparative analysis of different HVAC configurations. Advances in Building Energy Research, 17(5), 554-577.
  • Dena A. J. G. Hípola M. D. C. G. & Bandera C. F. (2024). Optimization Testing for the Modeling and Characterization of Three-Dimensional Elements to Enhance Interoperability from Building Information Modeling (BIM) to Building Energy Modeling (BEM). Energy and Buildings, 317, 114394.
  • Deng Z. Javanroodi K. Nik V. M. & Chen Y. (2023, September). Using urban building energy modeling to quantify the energy performance of residential buildings under climate change. In Building Simulation (Vol. 16, No. 9, pp. 1629-1643). Beijing: Tsinghua University Press.
  • DesignBuilder Software Ltd. DesignBuilder User Guide and tuturials. Access Date:01.03.2025. https://designbuilder.co.uk/training/tutorials
  • Dimoudi A. Kantzioura A. Toumpoulides P. Zoras S. Serghides D. Dimitriou S. ... & Dorri A. (2022, February). The energy performance of hospital buildings in the South Balkan region: The prospects for zero-energy hospitals. In Sustainable Energy Development and Innovation: Selected Papers from the World Renewable Energy Congress (WREC) 2020 (pp. 757-763). Cham: Springer International Publishing.
  • Dyussembekova N. Temirgaliyeva N. Umyshev D. Shavdinova M. Schuett R. & Bektalieva D. (2022). Assessment of Energy Efficiency Measures’ Impact on Energy Performance in the Educational Building of Kazakh-German University in Almaty. Sustainability, 14(16), 9813.
  • Ekhaese E. N. Mohammed I. A. & Akindoyin P. O. (2024). Bioclimatic design strategies and energy efficiency in an orthopaedic hospital in Nigerian cities: A cross-sectional study. Journal of Infrastructure, Policy and Development, 8(7), 2736.
  • ElSharkawy M. F. & Ibrahim, O. A. (2022). Impact of the restaurant chimney emissions on the outdoor air quality. Atmosphere, 13(2), 261.
  • Erdenizci E. & Dağlı U. U. (2023). The Role Of Semi-Public Spaces Of Eating-Drinking Establishments In The Community Life Of Cypriot Maronites Facing Extinction. METU Journal of the Faculty of Architecture, 39(2).
  • Ereser E. & Beyhan F. (2023). A Study on the Applicability of Energy Efficient Design Approaches in Airport Terminal Buildings. Gazi University Journal of Science Part B: Art Humanities Design and Planning, 11(3), 441-465.
  • Fernandes M. S. Coutinho B. & Rodrigues E. (2024). The impact of climate change on an office building in Portugal: Measures for a higher energy performance. Journal of Cleaner Production, 445, 141255.
  • Gigliarelli E. 2021. State of the Art Analysis on Building Performance Simulation on Historic Performance Simulation on Historic Buildings Date : Prepared by : Status : Version : Authors.
  • Gu X. Xie J. Huang C. & Liu J. (2022). A spatiotemporal passenger distribution model for airport terminal energy simulation. Indoor and Built Environment, 31(7), 1834-1857.
  • Gu X. Xie J. Huang C. Ma K. & Liu J. (2022). Prediction of the spatiotemporal passenger distribution of a large airport terminal and its impact on energy simulation. Sustainable Cities and Society, 78, 103619.
  • Guerra-Santin O. (2010). Itard, L. Occupants’ Behaviour: Determinants and Effects on Residential Heating Consumption. Build. Res. Inf. 38, 318–338.
  • Gunasegaran M. K. Hasanuzzaman M. Tan C. Bakar A. H. A. & Ponniah V. (2023). Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants. Energies, 16(20), 7145.
  • Gunasegaran M. K. Hasanuzzaman M. Tan C. Bakar A. H. A. & Ponniah V. (2022). Energy analysis, building energy index and energy management strategies for fast-food restaurants in Malaysia. Sustainability, 14(20), 13515.
  • Gupta G. Mathur S. Mathur J. & Nayak B. K. (2023). Comparison of energy-efficiency benchmarking methodologies for residential buildings. Energy and Buildings, 285, 112920.
  • Han F. Liu B. Wang Y. Dermentzis G. Cao X. Zhao L. ... & Feist W. (2022). Verifying of the feasibility and energy efficiency of the largest certified passive house office building in China: A three-year performance monitoring study. Journal of Building Engineering, 46, 103703.
  • Han Y. Long Z. J. Wen J. P. Sun Z. Li D. & Li K. (2023). Energy Consumption Simulation and Economic Study on the Insulation Layer Thickness of Desert Passenger Station Building. Eng. Adv, 3, 1-10.
  • Hasol D. (2008). Ansiklopedik Mimarlık Sözlüğü. 10. Basım, Yem Yayın, İstanbul, 313.
  • Heydarian A. McIlvennie C. Arpan L. Yousefi S. Syndicus M. Schweiker M. et al. (2020). What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories. Build Environ, 106928.
  • Hijazi M. Kensek K. Konis K. (2015). Bridging the gap: Supporting data transparency from BIM to BEM. In Proceedings of the ARCC 2015 Conference: Future of Architectural Research, Chicago, IL, USA, 6–9 April, 149–156.
  • Hong T. Taylor-Lange S. C. D'Oca S. Yan D. Corgnati S. (2016). Advances in Research and Applications of Energy-Related Occupant Behavior in Buildings. Energy and Buildings.
  • Hong T. Yan D. D’Oca S. Chen C. (2017). Ten questions concerning occupant behavior in buildings: The big picture. Building and Environment.
  • Hu T. Shang S. Xie J. Ji Y. Xue P. & Zhang N. (2024). Infectious diseases prevention and control with reduced energy consumption in an airport. Energy and Built Environment.
  • IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. (2017). Energy Build, 152:124–36.
  • IEA, Buildings - Sectorial overview - 2021 Tracking report, (2022). https://www. iea.org/reports/buildings (accessed 23 temmuz, 2023).
  • Ibrahim H. Elsayed M. S. Moustafa W. S. & Abdou H. M. (2023). Functional analysis as a method on sustainable building design: A case study in educational buildings implementing the triple bottom line. Alexandria Engineering Journal, 62, 63-73.
  • Islam M. H. Safayet M. A. & Al Mamun A. (2022). Building performance analysis for optimizing the energy consumption of an educational building. International Journal of Building Pathology and Adaptation.
  • Jaouaf S. Bensaad B. & Habib M. (2024). Passive strategies for energy-efficient educational facilities: Insights from a mediterranean primary school. Energy Reports, 11, 3653-3683.
  • Krarti M. (2022). Energy performance of control strategies for smart glazed windows applied to office buildings. Journal of Building Engineering, 45, 103462.
  • Ke Q. & White M. (2024). Does Energy Performance Rating Affect Office Rents? A Study of the UK Office Market. Journal of Sustainable Real Estate, 16(1), 2356715.
  • Khodeir L. (2017). Green BIM in heritage building: Integrating building energy models (BEM) with building information modelling (BIM) for sustainable retrofit of heritage buildings. In Heritage Building Information Modelling, 1st ed.; Arayici, Y., Counsell, J., Mahdjoubi, L., Nagy, G., Hawas, S., Dweidar, K., Eds.; Routledge: London, UK, 203–217.
  • Kılınç S. (2013).Doğrusal Regresyon analizi. Journal of Mood Disorders 2013;3(2):90-2.
  • Kim K. H. Chae C. U. & Cho D. (2022). Development of an assessment method for energy performance of residential buildings using G-SEED in South Korea. Journal of Asian Architecture and Building Engineering, 21(1), 133-144.
  • Kirme S. K. & Kapse V. S. (2024). A comprehensive review of residential building energy efficiency measures in India. Energy and Buildings, 114537.
  • Lefebvre H. (1995). The Production of Space, Translated by Donald Nicholson Smith. 4th Edition, Blackwell, Oxford, 1995,s.3-6.
  • Lim T. Yim W. S. & Kim D. D. (2022). Analysis of the thermal and cooling energy performance of the perimeter zones in an office building. Buildings, 12(2), 141.
  • Lin L. Chen G. Liu X. Liu X. & Zhang T. (2023). Characterizing cooling load in multi-area airport terminal buildings: Clustering and uncertainty analysis for energy flexibility. Journal of Building Engineering, 79, 107797.
  • Liu X. Ding Z.;Li X. Xue Z. (2023). Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database. Int. J. Environ. Res. Public Health 2023, 20, 3083.
  • Liu Y. Wang W. Huang Y. Song J. & Zhou, Z. (2024). Energy Performance Analysis and Study of an Office Building in an Extremely Hot and Cold Region. Sustainability, 16(2), 572.
  • Loga T. Diefenbach N. Born R. (2015). Deutsche Gebäudetypologie: Beispielhafte Maßnahmen Zur Verbesserung Der Energieeffizienz von Typischen Wohngebäuden; 2nd expanded ed.; Institut Wohnen und Umwelt: Darmstadt, Germany, ISBN 978-3-941140-47-9.
  • Ma K. Wang D. Sun Y. Wang W. & Gu X. (2024). Model predictive control for thermal comfort and energy optimization of an air handling unit system in airport terminals using occupant feedback. Sustainable Energy Technologies and Assessments, 65, 103790.
  • Ma, J. Inoue T. Fang Q. Li K. & Li M. (2023). A Study on Optimal Opening Configuration for Art Museum Exhibition Space Considering Daylight Performance, Indoor Thermal Comfort, and Energy Consumption. Sustainability, 15(23), 16431.
  • Majcen D. (2016). Predicting Energy Consumption and Savings in the Housing Stock. A Performance Gap Analysis in the Netherlands; Delft University of Technology, A+BE Architecture and the Built Environment, OTB: Delft, The Netherlands.
  • MGM(2025). https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=IZMIR. (Access on: 5 March 5, 2025).
  • Nkini S. Nuyts E. Kassenga G. Swai O. & Verbeeck G. (2023). Comparative analysis of the energy performance in green and non-green office buildings in Dar Es Salaam, Tanzania. Energy and Buildings, 293, 113202.
  • O’Hegarty R. Amedeo G. & Kinnane O. (2024). The impact of compromised insulation on building energy performance. Energy and Buildings, 316, 114337.
  • Özer Yaman G. Oral M. Dinçer K. & Canan F. (2023). Rule-Based Mamdani-Type Fuzzy Modelling of Buildings Annual Heating Energy Need in Design of Industrial Buildings in Konya Turkey.
  • Özgen E. (2020). Sağlık Yapıları İç Mekan Tasarımı: Kuram ve Uygulama Pratikleri Bağlamında Tartışma. Mimarlık ve Yaşam Dergisi, Journal of Architecture and Life, 5(2), 603-614.
  • Özkan A. (2017). Günümüz Türk İç Mekan Tasarımcıları ve Tasarım Anlayışları İç Mekan Tasarımı Kuram ve Yöntemleri Işığında Bir Yaklaşım, 1. Basım, Lambert Academic Publishing, Germany, 3-10.
  • Özlem A. Ashrafian T. (2022). Evaluation of Building Retrofitting Alternatives towards Zero Energy School Building in Turkey 1-8.
  • Öztuna D. Elhan A. H. Kurşun N. Sağlık Araştırmalarında Kullanılan İlişki Katsayıları, Turkiye Klinikleri J Med Sci 2008, 28:160-165.
  • Palani H. & Karatas A. (2022). Holistic approach for reducing occupants’ energy consumption in hotel buildings. Journal of Cleaner Production, 365, 132679.
  • Pang J. Fan Z. Yang M. Liu J. Zhang R. Wang W. & Sun L. (2023). Effects of complex spatial atrium geometric parameters on the energy performance of hotels in a cold climate zone in China. Journal of Building Engineering, 72, 106698.
  • Patil S. & Kini P. G. (2024). Calibration of simulation model to analyze hospital building energy performance. Energy and Buildings, 313, 114242.
  • Patterson M. Singh P. & Cho H. (2022). The current state of the industrial energy assessment and its impacts on the manufacturing industry. Energy Reports, 8, 7297-7311.
  • Permana I. Wang F. Agharid A. P. Rakshit D. & Luo J. (2023). Energy Consumption Analysis Using Weighted Energy Index and Energy Modeling for a Hotel Building. Buildings, 13(4), 1022.
  • Piras G. & Muzi F. (2024). Energy transition: semi-automatic BIM tool approach for elevating sustainability in the maputo natural history museum. Energies, 17(4), 775.
  • Prizeman O. Boughanmi M. & Pezzica C. (2022). Carnegie libraries of Britain: Assets or liabilities? Managing altering agendas of energy efficiency for early 20th century heritage. Public Library Quarterly, 41(1), 43-82.
  • Sahin C.D. Tunc oku S.S. Arsan Z.D. Erikksson P. Akkurt G.G. (2016). A Case Study for Energy Efficient Retrofitting of Historical Buildings, 8-10.
  • Saiful I. & Noranai Z. (2024). Improving Energy Consumption in A Commercial Restaurant. Journal of Design for Sustainable and Environment, 6(1), 49-53.
  • Seo J. Kim S. Lee S. Jeong H. Kim T. & Kim J. (2022). Data-driven approach to predicting the energy performance of residential buildings using minimal input data. Building and Environment, 214, 108911.
  • Serghides D. Dimitriou S. & Kyprianou I. (2022, February). Mediterranean Hospital Energy Performance Mapping: The Energy Auditing as a Tool Towards Zero Energy Healthcare Facilities. In Sustainable Energy Development and Innovation: Selected Papers from the World Renewable Energy Congress (WREC) 2020 (pp. 419-429). Cham: Springer International Publishing.
  • Seyis S. (2022). Comparative study for BIM-based LEED industrial building and non-LEED industrial building. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(3), 1081-1098.
  • Sheskin D. (2011). Handbook of Parametric and Nonparametric Statistical Procedures Test, Chapman and Hall/CRC, Fifth Edition,800.
  • Sholanke A. B. & Oyeyipo F. J. (2023). Appraisal of Lighting Strategies for Achieving Environmental Sustainability in Selected Art Museums and Galleries in Nigeria.
  • Shukri M. A. M. Jailani J. & Hauashdh A. (2022). Benchmarking the energy efficiency of higher educational buildings: A case study approach. International Journal of Energy Economics and Policy, 12(2), 491-496.
  • Silva B. V. Holm-Nielsen J. B. Sadrizadeh S. Teles, M. P. Kiani-Moghaddam M. & Arabkoohsar A. (2023). Sustainable, green, or smart? Pathways for energy-efficient healthcare buildings. Sustainable Cities and Society, 105013.
  • Sözen M. & Tanyeli U. (2018). Sanat Kavramlar ve Terimler Sözlüğü, 18. Basım, Remzi Kitabevi, İstanbul, 203.
  • Sukarti S. B. Sulaima M. F. Kadir A. F. A. Shamsor M. H. & Yao S. W. (2024). Advancing industrial building energy measurement and verification (M&V) with deep learning: Evaluating data size and feature selection impact. Energy and Buildings, 114457.
  • Tachir G. Altınöz M. & Mıhlayanlar E. (2024). Energy Consumption at Accommodation Buildings: A Case Study of a Boutique Hotel-Abdera. Kocaeli Journal of Science and Engineering, 7(1), 71-80.
  • Tamer T. Dino I. G. Baker D. K. & Akgül C. M. (2023). Coupling PCM wallboard utilization with night Ventilation: Energy efficiency and overheating risk in office buildings under climate change impact. Energy and Buildings, 298, 113482.
  • Tan H. & Dang R. (2022). Review of lighting deterioration, lighting quality, and lighting energy saving for paintings in museums. Building and Environment, 208, 108608.
  • Tomrukçu G. Ashrafian T. (2022). Energy-efficient building design under climate change adaptation process: a case study of a single-family house. Int. J. Build. Pathol. Adapt.
  • Tong J. Wang Y. Qiu Z. Zhang J. Li S. Li C. ... & Chen L. (2024). Thermal performance of phase-change wall of a hotel building under hot-summer and cold-winter climate. Journal of Asian Architecture and Building Engineering, 1-14
  • Ulu M. (2017). State of the Art Survey for Energy-Efficient Retrofit of Historic State of the Survey Energy- Efficient Retrofit of Historic Residential.
  • Turan T. Makine Öğrenmesi Algoritmalari ile Su Kalitesi ve İçilebilirlik Tahmini. Uluborlu Mesleki Bilimler Dergisi, 6(2), 65-80.
  • Türk Standardı TSE 825, Binalarda Isı Yalıtım Kuralları. Türk Standartları Enstitüsü, 2013, Ankara.
  • Uddin M. N. Ruva I. J. Syed, M. A. Hossain D. Akter R. Tamanna N. ... & Saka A. (2022). Occupant centric energy renovation strategy for hospital and restaurant building envelop using distinct modellingtools: A case study from low-income cultural context. Energy and Buildings, 272, 112338.
  • Uşma G. (2021). Enerji Etkin Konutlarda Kullanıcı Memnuniyetinin Değerlendirilmesine Yönelik Bir Model Geliştirilmesi". Yıldız Teknik Üniversitesi.
  • Xu J. 2024. Research on energy-saving strategies in the architectural design of the Eastern Railway in the era of artificial intelligence. Applied Mathematics and Nonlinear Sciences, 9(1).
  • van den Brom P. Meijer A. Visscher H. (2018). Performance Gaps in Energy Consumption: Household Groups and Building Characteristics. Build. Res. Inf. 46, 54–70.
  • Vaisi S. Firouzi M. & Varmazyari P. (2023). Energy benchmarking for secondary school buildings, applying the Top-Down approach. Energy and Buildings, 279, 112689.
  • Vandenbogaerde L. Verbeke S. & Audenaert A. (2023). Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings. Journal of Building Engineering, 107233.
  • Vaz C. F. Maciel A. C. F. Piccello I. & Araujo A. L. D. (2024). Environmental Sustainability in Traditional University Libraries: Contributions from BIM/BES Integration to the Thermal Performance and Books Conservation. In The Contribution of Universities Towards Education for Sustainable Development (pp. 145-167). Cham: Springer Nature Switzerland.
  • Vestfal P. & Seduikyte L. (2024). Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM. Buildings, 14(7), 2007.
  • Verstina N. Solopova N. Taskaeva N. Meshcheryakova T. & Shchepkina N. (2022). A new approach to assessing the energy efficiency of industrial facilities. Buildings, 12(2), 191.
  • Wang, X. Yuan, J. You, K. Ma, X. Li, Z. (2023). Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and ColdWinter Zone in China. Sustainability 2023, 15, 1575.
  • Wang Z. Shen H. Deng G. Liu X. & Wang D. (2024). Measured performance of energy efficiency measures for zero-energy retrofitting in residential buildings. Journal of Building Engineering, 91, 109545.
  • Webber C.A. 2001. Field surveys of office equipment operating patterns.
  • W.G.B.C. Webpage, Bringing embodied carbon upfront, http://tinyurl .com / 5974d7z6, 2022. (Accessed 20 February 2024).
  • W.G.B.C. Webpage, Bringing embodied carbon upfront, http://tinyurl .com / 5974d7z6, 2022. (Accessed 23 Temmuz 2024).
  • Yaman, G. Ö. (2025). Determination of Optimum Passive Design Parameters for Industrial Buildings in Different Climate Zones Using an Energy Performance Optimization Model Based on an Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO). Sustainability, 17(6), 2357.
  • Yan D. O’Brien L. Hong T. Feng X. Gunay B. Tahamasebi F. Mahdavi A. (2015). Occupant behavior modeling for building performance simulation: current state and future challenges. Energy and Buildings.
  • Yang Y. Pan Y. Zeng F. Lin Z. Li C. (2022). A gbxml reconstruction workflow and tool development to improve the geometric interoperability between bim and bem, Buildings, 12.
  • Yildiz O. F. Yilmaz M. & Celik A. (2022). Reduction of energy consumption and CO2 emissions of HVAC system in airport terminal buildings. Building and Environment, 208, 108632.
  • Yoshino H. Hong T. Nord N. (2017) IEA EBC annex 53: Total energy use in buildings Analysis and evaluation methods. Energy and Buildings, 152, 124-136.
  • Yan D. O’Brien W. Hong T. Feng X. Gunay H. B. Tahmasebi F. et al. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build, 107:264–78.
  • Zhang J. Yuan C. Yang J. & Zhao L. (2024). Research on Energy Consumption Prediction Models for High-Rise Hotels in Guangzhou, Based on Different Machine Learning Algorithms. Buildings, 14(2), 356.
  • Zhou B. & Wang D. (2023). Integrated performance optimization of industrial buildings in relation to thermal comfort and energy consumption: A case study in hot summer and cold winter climate. Case Studies in Thermal Engineering, 46, 102991.
  • Url-1: https://www.serhatnews.com/vanda-toki-basvuru-tarih-ve-sartlari-belli-oldu
  • Url-2: https://www.haberturk.com/toki-mersin-de-hangi-ilcelere-konut-yapacak-mersin-toki-evleri-nerede-yapilacak-sartlari-neler-3520896
  • Url-3: https://www.gunebakis.com.tr/haber/12932019/toki-konutlari-icin-3-mahalle-taraniyor
  • Url-4: https://okul.com.tr/adana-seyhan-okullari?sector=devlet
  • Url-5: https://sivasataturkmtal.meb.k12.tr/icerikler/okulumuzu-taniyalim9721189.html
  • Url-6: https://nerminahmethasoglukizaihl.meb.k12.tr/icerikler/nermin-ahmet-hasoglu-kiz-anadolu-imam-hatip-lisesi-tarihce11829881.html.
Toplam 136 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sürdürülebilir Tasarım, Yapı Fiziği
Bölüm Araştırma Makalesi
Yazarlar

Gonca Özer 0000-0002-0156-3994

Gönderilme Tarihi 19 Ocak 2025
Kabul Tarihi 2 Haziran 2025
Yayımlanma Tarihi 30 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 45 Sayı: 2

Kaynak Göster

APA Özer, G. (2025). Investigation of the Relationship Between Building Functions and Energy Performance Using BIM/BES Methods Across Different Climate Types. Isı Bilimi ve Tekniği Dergisi, 45(2), 172-192. https://doi.org/10.47480/isibted.1622706