Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimizing Thermal Efficiency and Emissions in Hybrid HCCI-DI Combustion with Biodiesel-Diethyl Ether-Nanoparticle Blends

Yıl 2025, Cilt: 45 Sayı: 2, 193 - 206, 30.10.2025
https://doi.org/10.47480/isibted.1630463

Öz

This study used a Homogeneous Charge Compression Ignition-Direct Injection (HCCI-DI) engine to test the combustion, performance, and emissions of neem oil biodiesel blends. Analysis of engine behaviour was conducted based on the biodiesel blending ratio, combustion mode, and addition of aluminium oxide (Al2O3) nano additive. It has been found that peak in-cylinder pressures (Pmax) and heat release rates decreased with increasing biodiesel content, both in Direct Injection (DI) and HCCI-DI. Compared to DI, the HCCI-DI improved combustion characteristics, while the nano Al2O3 provided further improvements. In DI and HCCI-DI, pure biodiesel reduced brake thermal efficiency (BTE) by 2.01% and 1.68%, respectively. However, diesel and biodiesel BTE increased when HCCI-DI was used, as well as Al2O3 nano additive. Nitrogen oxide (NOx) emissions from biodiesel increased by 18.3% in DI mode but decreased by 4.3% in HCCI-DI mode when nano additives were used. Hydrocarbon (HC) emissions are reduced by 52.17% by biodiesel, however they are increased by HCCI-DI mode. On the other hand, HC emissions are reduced by up to 19.51% by nano additives. Carbon monoxide (CO) emissions were reduced by up to 55.56%, and smoke emissions decreased by 22.7% in DI mode and 39.1% in HCCI-DI mode due to using biodiesel, HCCI-DI mode, and the nano additive. Combining biodiesel and HCCI-DI combustion in engines with Al2O3 nano additive enhances performance and reduces emissions.

Kaynakça

  • Ağbulut, Ü., Sarıdemir, S., & Albayrak, S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9). https://doi.org/10.1007/S40430-019-1891-8
  • Al-Dawody, M. F., Al-Farhany, K. A., Hamza, N. H., & Hamzah, D. A. (2021a). Numerical study for the spray characteristics of a diesel engine powered by biodiesel fuels under different injection pressures. Journal of Engineering Research. https://doi.org/10.36909/jer.9821
  • Algayyim, S. J. M., Saleh, K., Wandel, A. P., Fattah, I. M. R., Yusaf, T., & Alrazen, H. A. (2024). Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel, 362. https://doi.org/10.1016/J.FUEL.2023.130844
  • Bakar, R. A., Widudo, Kadirgama, K., Ramasamy, D., Yusaf, T., Kamarulzaman, M. K., Sivaraos, Aslfattahi, N., Samylingam, L., & Alwayzy, S. H. (2024). Experimental analysis on the performance, combustion/emission characteristics of a DI diesel engine using hydrogen in dual fuel mode. International Journal of Hydrogen Energy, 52, 843–860. https://doi.org/10.1016/J.IJHYDENE.2022.04.129
  • Bazdidi-Tehrani, F., Sharifi-Sedeh, E., & Abedinejad, M. S. (2023). Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets. Journal of the Taiwan Institute of Chemical Engineers, 143, 104713. https://doi.org/10.1016/j.jtice.2023.104713
  • Beyaz, M., Aydın, S., & Şener, R. (2025). Influence of ethyl proxitol on cold filter plugging point, combustion, emissions characteristics of biodiesel blends in CI engines. Petroleum Science and Technology, 43(3), 284–304. https://doi.org/10.1080/10916466.2023.2292783
  • Bhikuning, A., Irhashi, Z. R., & Aldebaran, D. (2022). The Simulation of Combustion Characteristics from Diesel Fuel and Biodiesel in Different Engine Rotation. Aceh International Journal of Science and Technology, 11(3), 182–189. https://doi.org/10.13170/aijst.11.3.22711
  • Chen, G., Kong, W., Xu, Y., Shen, Y., & Wei, F. (2024). Thermal efficiency and emissions improvement of the lean burn high compression ratio HPDI NG engine at different combustion modes. Applied Thermal Engineering, 247, 123061. https://doi.org/10.1016/J.APPLTHERMALENG.2024.123061
  • Coskun, G., Soyhan, H. S., Demir, U., Turkcan, A., Ozsezen, A. N., & Canakci, M. (2014). Influences of second injection variations on combustion and emissions of an HCCI-DI engine: Experiments and CFD modelling. Fuel, 136, 287–294. https://doi.org/10.1016/j.fuel.2014.07.042
  • Da Silva Medeiros, D. C. C., Usman, M., Chelme-Ayala, P., & Gamal El-Din, M. (2025). Biochar-enhanced removal of naphthenic acids from oil sands process water: Influence of feedstock and chemical activation. Energy & Environmental Sustainability, 1(2), 100028. doi: https://doi.org/10.1016/j.eesus.2025.100028
  • Dash, S. K., Elumalai, P. V., Ranjit, P. S., Das, P. K., Kumar, R., Kunar, S., & Papu, N. H. (2021). Experimental investigation on synthesis of biodiesel from non-edible Neem seed oil: Production optimization and evaluation of fuel properties. Materials Today: Proceedings, 47, 2463–2466. https://doi.org/10.1016/j.matpr.2021.04.551
  • Dhahad, H. A., Ali, S. A., & Chaichan, M. T. (2020). Combustion analysis and performance characteristics of compression ignition engines with diesel fuel supplemented with nano-TiO2 and nano-Al2O3. Case Studies in Thermal Engineering, 20, 100651. https://doi.org/10.1016/j.csite.2020.100651
  • Dubey, A., Prasad, R. S., Singh, J. K., & Nayyar, A. (2022). Combined effects of biodiesel − ULSD blends and EGR on performance and emissions of diesel engine using Response surface methodology (RSM). Energy Nexus, 7, 100136. https://doi.org/10.1016/J.NEXUS.2022.100136
  • Fang, J., Wang, K., Chen, P., Xu, X., Zhang, C., Wu, Y.,... Zuo, Z. (2025). Oxidation of Soot by Cerium Dioxide Synthesized Under Different Hydrothermal Conditions. Molecules, 30(5), 1161. https://doi.org/10.3390/molecules30051161
  • Farokhi, G., Saidi, M., & Najafabadi, A. T. (2023). Application of spinel Type NixZn1−xFe2O4 magnetic nanocatalysts for biodiesel production from neem seed oil: Catalytic performance evaluation and optimization. Industrial Crops and Products, 192, 116035. https://doi.org/10.1016/j.indcrop.2022.116035
  • G M, L. L., M, C. Das, Jayabal, R., S, M., D, S., & N, M. (2023). Experimental evaluation and neural network modelling of reactivity-controlled compression ignition engine using cashew nut shell oil biodiesel-alumina nanoparticle blend and gasoline injection. Energy, 282, 128923. https://doi.org/10.1016/j.energy.2023.128923
  • Hariharan, D., Rajan Krishnan, S., Kumar Srinivasan, K., & Sohail, A. (2021). Multiple injection strategies for reducing HC and CO emissions in diesel-methane dual-fuel low temperature combustion. Fuel, 305, 121372. https://doi.org/10.1016/J.FUEL.2021.121372
  • Hosseini, S. H., Tsolakis, A., Alagumalai, A., Mahian, O., Lam, S. S., Pan, J., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023). Use of hydrogen in dual-fuel diesel engines. Progress in Energy and Combustion Science, 98, 101100. https://doi.org/10.1016/J.PECS.2023.101100
  • Jairam, K., Mohammed Musthafa, F., Annanth Vijayan, K., & Renganathan, M. (2021). Computational investigations on port injected DEE in a biogas inducted HCCI engine. International Journal for Simulation and Multidisciplinary Design Optimization, 12, 9. https://doi.org/10.1051/smdo/2021010
  • Jayabal R. (2024). Optimization and impact of modified operating parameters of a diesel engine emissions characteristic utilizing waste fat biodiesel/di-tert-butyl peroxide blend. Process Safety and Environmental Protection, 186, 694-705. https://doi.org/j.psep.2024.04.019
  • Jayabal R. (2025). Environmental impact of adding hybrid nanoparticles and hydrogen to the algae biodiesel-diesel blend on engine emissions. Process Safety and Environmental Protection, 198, https://doi.org/j.psep.2025.107102
  • Jokubynienė, V., Slavinskas, S., & Kreivaitis, R. (2023). The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels. Lubricants, 11(7), 290. https://doi.org/10.3390/lubricants11070290
  • Leo, G. M. L., Sekar, S., & Arivazhagan, S. (2020). Experimental investigation and ANN modelling of the effects of diesel/gasoline premixing in a waste cooking oil-fuelled HCCI-DI engine. Journal of Thermal Analysis and Calorimetry, 141(6), 2311–2324. https://doi.org/10.1007/S10973-020-09418-Z
  • Leo, G. M. L., Thodda, G., & Murugapoopathi, S. (2021). Experimental investigation on effects of gasoline premixed - Al2O3 additive blended fish oil biodiesel fuelled HCCI-DI engine. Journal of Physics: Conference Series, 2054(1), 012040. https://doi.org/10.1088/1742-6596/2054/1/012040
  • Li, Z., Liu, J., Ji, Q., Sun, P., Wang, X., & Xiang, P. (2023). Influence of hydrogen fraction and injection timing on in-cylinder combustion and emission characteristics of hydrogen-diesel dual-fuel engine. Fuel Processing Technology, 252, 107990. https://doi.org/10.1016/j.fuproc.2023.107990
  • Liao, H., Hu, F., Wu, X., Li, P., Ding, C., Yang, C., Zhang, T., & Liu, Z. (2024). Effects of H2 addition on the characteristics of the reaction zone and NOx mechanisms in MILD combustion of H2-rich fuels. International Journal of Hydrogen Energy, 58, 174–189. https://doi.org/10.1016/j.ijhydene.2024.01.154
  • Lionus Leo, G. M., Jayabal, R., Srinivasan, D., Chrispin Das, M., Ganesh, M., & Gavaskar, T. (2024). Predicting the performance and emissions of an HCCI-DI engine powered by waste cooking oil biodiesel with Al2O3 and FeCl3 nano additives and gasoline injection – A random forest machine learning approach. Fuel, 357. https://doi.org/10.1016/j.fuel.2023.129914
  • Lionus Leo, G. M., Murugapoopathi, S., Thodda, G., Baligidad, S. M., Jayabal, R., Nedunchezhiyan, M., & Devarajan, Y. (2023). Optimisation and environmental analysis of waste cashew nut shell oil biodiesel/cerium oxide nanoparticles blends and acetylene fumigation in agricultural diesel engine. Sustainable Energy Technologies and Assessments, 58, 103375. https://doi.org/10.1016/j.seta.2023.103375
  • Lionus Leo G.M., Jayabal R., Kathapillai A., Sekar S. (2025a). Performance and emissions optimization of a dual-fuel diesel engine powered by cashew nut shell oil biodiesel/hydrogen gas using response surface methodology. Fuel, 384, https://doi.org/j.fuel.2024.133960
  • Lionus Leo G.M., Jayabal R., Chrispin Das M., Arivazhagan S. (2025b). An experimental investigation on enhancing diesel engine performance and emissions with cashew nut shell oil biodiesel and hydrogen fumigation. Environment, Development and Sustainability. https://doi.org/s10668-024-05565-7
  • Luo, J., Liu, Z., Wang, J., Xu, H., Tie, Y., Yang, D., Zhang, Z., Zhang, C., & Wang, H. (2022). Investigation of hydrogen addition on the combustion, performance, and emission characteristics of a heavy-duty engine fueled with diesel/natural gas. Energy, 260, 125082. https://doi.org/10.1016/J.ENERGY.2022.125082
  • Madihi, R., Pourfallah, M., Gholinia, M., Armin, M., & Ghadi, A. Z. (2022). Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2) / natural gas heavy-duty engine with RCCI mode (Part II: Fuel injection time/ Fuel injection rate). International Journal of Thermofluids, 16, 100200. https://doi.org/10.1016/j.ijft.2022.100200
  • Mary, L. L. G., Manivel, S., Garg, S., Nagam, V. B., Garse, K., Mali, R., Yunus Khan, T. M., & Baig, R. U. (2023). Exploring the Impact of Al2O3 Additives in Gasoline on HCCI-DI Engine Performance: An Experimental, Neural Network, and Regression Analysis Approach. ACS Omega, 8(50), 47701–47713. https://doi.org/10.1021/ACSOMEGA.3C05959
  • Mathiyazhagan, M., Meenakshi Sundaram, K., & Bupesh, G. (2022). Production and emission evaluation of neem biodiesel blends in a single cylinder diesel engine. Materials Today: Proceedings, 62, 2124–2132. https://doi.org/10.1016/j.matpr.2022.03.047
  • Mishra, A., Kulshrestha, S., Patel, F. M., Tiwari, N., & Sharma, A. (2024). Effect of piston bowl geometry and spray angle on engine performance and emissions in HCCI engine using multi‐stage injection strategy. Environmental Progress & Sustainable Energy, 43(2). https://doi.org/10.1002/ep.14203
  • Mohankumar, D., Indharajith, P., Sabarishankar, P., Sanjaykumar, V. T., Vignesh kumar, N., & Udhayakumar, N. (2023). Experimental investigation on performance, emission and combustion characteristics of neem oil bio diesel using ethanol blend. Materials Today: Proceedings, 80, 1525–1529. https://doi.org/10.1016/j.matpr.2023.01.352
  • Mohanrajhu N., Sekar S., Jayabal R., Sureshkumar R. (2024). Impact of Aluminum Nitrate and Graphene Oxide Nanoplate on Performance and Emission Characteristics of a CRDI Diesel Engine Powered by Industrial Leather Waste Fat Biodiesel. International Journal of Automotive Technology, https://doi.org/s12239-024-00205-5
  • Vellaiyan, S. (2025a). Optimization of hydrogen-enriched biodiesel-diesel dual-fuel combustion with EGR for sustainable engine performance. International Journal of Hydrogen Energy, 128, 85–94. https://doi.org/10.1016/j.ijhydene.2025.04.239
  • Vellaiyan, S. (2025b). Performance enhancement of a diesel engine using nanoparticle-enriched algae biodiesel-diesel blends with an electrostatic precipitator for nanoparticle emission control. Energy Conversion and Management, 326, 119457.https://doi.org/10.1016/j.enconman.2024.119457
  • Savaş, A., Uslu, S., & Şener, R. (2025). Optimization of performance and emission characteristics of a diesel engine fueled with MgCO3 nanoparticle doped second generation biodiesel from jojoba by using response surface methodology (RSM). Fuel, 381, 133658. https://doi.org/10.1016/j.fuel.2024.133658
  • Sekar, S., Chandrasekar, P., Kumar, S., Jospher, A. J. S., Sheeja, R., Valarmathi, T. N., & Lionus Leo, G. M. (2021). Entropy Generation Minimization of Vapour Absorption Heat Transformer. Lecture Notes in Mechanical Engineering, 265–274. https://doi.org/10.1007/978-981-33-4165-4_25
  • ŞENER, R. (2021). Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a CI Engine. International Journal of Advances in Engineering and Pure Sciences, 33(2), 299–307. https://doi.org/10.7240/jeps.829006
  • Sheik, M. A., Beemkumar, N., Gupta, A., Gill, A., Devarajan, Y., Jayabal, R., & Lionus Leo, G. M. (2024). Study the Effect of Silicon Nanofluid on the Heat Transfer Enhancement of Triangular-Shaped Open Microchannel Heat Sinks. Silicon, 16(1), 277–293. https://doi.org/10.1007/S12633-023-02663-5
  • Shivkumar, C., Amar, P., & Mitesh, G. (2021). Experimental Investigation on VCR Engine by Using Different Blend Proportions of Mexicana Oil Biodiesel. In Techno-Societal 2020 (pp. 437–443). Springer International Publishing. https://doi.org/10.1007/978-3-030-69925-3_43
  • Simhadri, K., Rao, P. S., & Paswan, M. (2024). Improving the combustion and emission performance of a diesel engine with TiO2 nanoparticle blended Mahua biodiesel at different injection pressures. International Journal of Thermofluids, 21, 100563. https://doi.org/10.1016/j.ijft.2024.100563
  • SivaPrasad, K., Rao, S. S., & Raju, V. R. K. (2022). Enhancement of mixture homogeneity for DI-CI engine to achieve Homogeneous Charge Compression Ignition (HCCI) combustion characteristics: a numerical approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 4318–4333. https://doi.org/10.1080/15567036.2022.2075058
  • Spanò, S., Savarese, M., Parente, A., Contino, F., & Jeanmart, H. (2024). Experimental and numerical investigation of methane combustion in a HCCI engine under enriched oxygen conditions. Fuel, 362, 130772. https://doi.org/10.1016/j.fuel.2023.130772
  • Subramani, S., Dana, S. S., Natesan, V. T., & Mary, L. L. G. (2020). Energy and exergy analysis of greenhouse drying of ivy gourd and turkey berry. Thermal Science, 24(1 Part B), 645–656. https://doi.org/10.2298/TSCI190602459S Tai, M., Vo, C., Duong, L., Do, A., Huynh, V., & Nguyen, H. (2023). Experimental Study on Combustion Characteristics of Biodiesel–Ethanol Dual Fuel: An Overview. Journal of Technical Education Science, 75A, 50–60. https://doi.org/10.54644/jte.75A.2023.1269
  • Varpe, B. R., & Kharde, Y. R. (2023). Combined effect of DEE and Jatropha biodiesel–diesel fuel blends on the enhancement of VCR diesel engine parameters at varying loads and compression ratios. Australian Journal of Mechanical Engineering, 21(5), 1843–1860. https://doi.org/10.1080/14484846.2022.2038405
  • Venkatesan, S. P., & Kadiresh, P. N. (2015). Effects of Nano-Sized Metal Oxide Additive on Performance and Exhaust Emissions of C I Engine. Applied Mechanics and Materials, 766–767, 389–395. https://doi.org/10.4028/www.scientific.net/AMM.766-767.389
  • Veza, I., Irianto, Tuan Hoang, A., Yusuf, A. A., Herawan, S. G., Soudagar, M. E. M., Samuel, O. D., Said, M. F. M., & Silitonga, A. S. (2023). Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel, 333, 126377. https://doi.org/10.1016/j.fuel.2022.126377
  • Yasar, F., Uguz, G., & Kayunoglu, C. (2022). Change in Calculated Carbon Aromaticity Index (CCAI) Depending on Cetane Indexes of Biodiesel Fuels of Different Origins. 2022 Global Energy Conference (GEC), 352–356. https://doi.org/10.1109/GEC55014.2022.9986785
  • Zhang, L., Zhu, G., Chao, Y., Chen, L., & Ghanbari, A. (2023). Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools. Energy, 282, 128972. https://doi.org/10.1016/J.ENERGY.2023.128972
  • Zhang, S., Li, J., Tian, Y., Fang, S., Li, C., Yu, X.,... Yang, L. (2025). Probing the combustion characteristics of micron-sized aluminum particles enhanced with graphene fluoride. Combustion and Flame, 272, 113858. https://doi.org/10.1016/j.combustflame.2024.113858
  • Zhang, W., Shi, L., Xia, W., Du, Y., & Yao, L. (2025). Research on the anharmonic effect of main reactions of important intermediate species in NH3/DME mixed combustion. Chemical Physics Letters, 874-875, 142170. https://doi.org/10.1016/j.cplett.2025.142170
  • Zhang, Y., Zhong, Y., Wang, J., Tan, D., Zhang, Z., & Yang, D. (2021). Effects of Different Biodiesel-Diesel Blend Fuel on Combustion and Emission Characteristics of a Diesel Engine. Processes, 9(11), 2021. https://doi.org/10.3390/pr9111984
  • Zhu, L., Song, Y., Chen, H., Wang, M., Liu, Z., Wei, X.,... Ai, T. (2025). Optimization of power generation and sewage treatment in stacked pulsating gas-liquid-solid circulating fluidized bed microbial fuel cell using response surface methodology. International Journal of Hydrogen Energy, 101, 161-172. https://doi.org/10.1016/j.ijhydene.2024.12.397

Optimizing Thermal Efficiency and Emissions in Hybrid HCCI-DI Combustion with Biodiesel-Diethyl Ether-Nanoparticle Blends

Yıl 2025, Cilt: 45 Sayı: 2, 193 - 206, 30.10.2025
https://doi.org/10.47480/isibted.1630463

Öz

This study used a Homogeneous Charge Compression Ignition-Direct Injection (HCCI-DI) engine to test the combustion, performance, and emissions of neem oil biodiesel blends. Analysis of engine behaviour was conducted based on the biodiesel blending ratio, combustion mode, and addition of aluminium oxide (Al2O3) nano additive. It has been found that peak in-cylinder pressures (Pmax) and heat release rates decreased with increasing biodiesel content, both in Direct Injection (DI) and HCCI-DI. Compared to DI, the HCCI-DI improved combustion characteristics, while the nano Al2O3 provided further improvements. In DI and HCCI-DI, pure biodiesel reduced brake thermal efficiency (BTE) by 2.01% and 1.68%, respectively. However, diesel and biodiesel BTE increased when HCCI-DI was used, as well as Al2O3 nano additive. Nitrogen oxide (NOx) emissions from biodiesel increased by 18.3% in DI mode but decreased by 4.3% in HCCI-DI mode when nano additives were used. Hydrocarbon (HC) emissions are reduced by 52.17% by biodiesel, however they are increased by HCCI-DI mode. On the other hand, HC emissions are reduced by up to 19.51% by nano additives. Carbon monoxide (CO) emissions were reduced by up to 55.56%, and smoke emissions decreased by 22.7% in DI mode and 39.1% in HCCI-DI mode due to using biodiesel, HCCI-DI mode, and the nano additive. Combining biodiesel and HCCI-DI combustion in engines with Al2O3 nano additive enhances performance and reduces emissions.

Etik Beyan

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Kaynakça

  • Ağbulut, Ü., Sarıdemir, S., & Albayrak, S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9). https://doi.org/10.1007/S40430-019-1891-8
  • Al-Dawody, M. F., Al-Farhany, K. A., Hamza, N. H., & Hamzah, D. A. (2021a). Numerical study for the spray characteristics of a diesel engine powered by biodiesel fuels under different injection pressures. Journal of Engineering Research. https://doi.org/10.36909/jer.9821
  • Algayyim, S. J. M., Saleh, K., Wandel, A. P., Fattah, I. M. R., Yusaf, T., & Alrazen, H. A. (2024). Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel, 362. https://doi.org/10.1016/J.FUEL.2023.130844
  • Bakar, R. A., Widudo, Kadirgama, K., Ramasamy, D., Yusaf, T., Kamarulzaman, M. K., Sivaraos, Aslfattahi, N., Samylingam, L., & Alwayzy, S. H. (2024). Experimental analysis on the performance, combustion/emission characteristics of a DI diesel engine using hydrogen in dual fuel mode. International Journal of Hydrogen Energy, 52, 843–860. https://doi.org/10.1016/J.IJHYDENE.2022.04.129
  • Bazdidi-Tehrani, F., Sharifi-Sedeh, E., & Abedinejad, M. S. (2023). Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets. Journal of the Taiwan Institute of Chemical Engineers, 143, 104713. https://doi.org/10.1016/j.jtice.2023.104713
  • Beyaz, M., Aydın, S., & Şener, R. (2025). Influence of ethyl proxitol on cold filter plugging point, combustion, emissions characteristics of biodiesel blends in CI engines. Petroleum Science and Technology, 43(3), 284–304. https://doi.org/10.1080/10916466.2023.2292783
  • Bhikuning, A., Irhashi, Z. R., & Aldebaran, D. (2022). The Simulation of Combustion Characteristics from Diesel Fuel and Biodiesel in Different Engine Rotation. Aceh International Journal of Science and Technology, 11(3), 182–189. https://doi.org/10.13170/aijst.11.3.22711
  • Chen, G., Kong, W., Xu, Y., Shen, Y., & Wei, F. (2024). Thermal efficiency and emissions improvement of the lean burn high compression ratio HPDI NG engine at different combustion modes. Applied Thermal Engineering, 247, 123061. https://doi.org/10.1016/J.APPLTHERMALENG.2024.123061
  • Coskun, G., Soyhan, H. S., Demir, U., Turkcan, A., Ozsezen, A. N., & Canakci, M. (2014). Influences of second injection variations on combustion and emissions of an HCCI-DI engine: Experiments and CFD modelling. Fuel, 136, 287–294. https://doi.org/10.1016/j.fuel.2014.07.042
  • Da Silva Medeiros, D. C. C., Usman, M., Chelme-Ayala, P., & Gamal El-Din, M. (2025). Biochar-enhanced removal of naphthenic acids from oil sands process water: Influence of feedstock and chemical activation. Energy & Environmental Sustainability, 1(2), 100028. doi: https://doi.org/10.1016/j.eesus.2025.100028
  • Dash, S. K., Elumalai, P. V., Ranjit, P. S., Das, P. K., Kumar, R., Kunar, S., & Papu, N. H. (2021). Experimental investigation on synthesis of biodiesel from non-edible Neem seed oil: Production optimization and evaluation of fuel properties. Materials Today: Proceedings, 47, 2463–2466. https://doi.org/10.1016/j.matpr.2021.04.551
  • Dhahad, H. A., Ali, S. A., & Chaichan, M. T. (2020). Combustion analysis and performance characteristics of compression ignition engines with diesel fuel supplemented with nano-TiO2 and nano-Al2O3. Case Studies in Thermal Engineering, 20, 100651. https://doi.org/10.1016/j.csite.2020.100651
  • Dubey, A., Prasad, R. S., Singh, J. K., & Nayyar, A. (2022). Combined effects of biodiesel − ULSD blends and EGR on performance and emissions of diesel engine using Response surface methodology (RSM). Energy Nexus, 7, 100136. https://doi.org/10.1016/J.NEXUS.2022.100136
  • Fang, J., Wang, K., Chen, P., Xu, X., Zhang, C., Wu, Y.,... Zuo, Z. (2025). Oxidation of Soot by Cerium Dioxide Synthesized Under Different Hydrothermal Conditions. Molecules, 30(5), 1161. https://doi.org/10.3390/molecules30051161
  • Farokhi, G., Saidi, M., & Najafabadi, A. T. (2023). Application of spinel Type NixZn1−xFe2O4 magnetic nanocatalysts for biodiesel production from neem seed oil: Catalytic performance evaluation and optimization. Industrial Crops and Products, 192, 116035. https://doi.org/10.1016/j.indcrop.2022.116035
  • G M, L. L., M, C. Das, Jayabal, R., S, M., D, S., & N, M. (2023). Experimental evaluation and neural network modelling of reactivity-controlled compression ignition engine using cashew nut shell oil biodiesel-alumina nanoparticle blend and gasoline injection. Energy, 282, 128923. https://doi.org/10.1016/j.energy.2023.128923
  • Hariharan, D., Rajan Krishnan, S., Kumar Srinivasan, K., & Sohail, A. (2021). Multiple injection strategies for reducing HC and CO emissions in diesel-methane dual-fuel low temperature combustion. Fuel, 305, 121372. https://doi.org/10.1016/J.FUEL.2021.121372
  • Hosseini, S. H., Tsolakis, A., Alagumalai, A., Mahian, O., Lam, S. S., Pan, J., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023). Use of hydrogen in dual-fuel diesel engines. Progress in Energy and Combustion Science, 98, 101100. https://doi.org/10.1016/J.PECS.2023.101100
  • Jairam, K., Mohammed Musthafa, F., Annanth Vijayan, K., & Renganathan, M. (2021). Computational investigations on port injected DEE in a biogas inducted HCCI engine. International Journal for Simulation and Multidisciplinary Design Optimization, 12, 9. https://doi.org/10.1051/smdo/2021010
  • Jayabal R. (2024). Optimization and impact of modified operating parameters of a diesel engine emissions characteristic utilizing waste fat biodiesel/di-tert-butyl peroxide blend. Process Safety and Environmental Protection, 186, 694-705. https://doi.org/j.psep.2024.04.019
  • Jayabal R. (2025). Environmental impact of adding hybrid nanoparticles and hydrogen to the algae biodiesel-diesel blend on engine emissions. Process Safety and Environmental Protection, 198, https://doi.org/j.psep.2025.107102
  • Jokubynienė, V., Slavinskas, S., & Kreivaitis, R. (2023). The Effect of Nanoparticle Additives on the Lubricity of Diesel and Biodiesel Fuels. Lubricants, 11(7), 290. https://doi.org/10.3390/lubricants11070290
  • Leo, G. M. L., Sekar, S., & Arivazhagan, S. (2020). Experimental investigation and ANN modelling of the effects of diesel/gasoline premixing in a waste cooking oil-fuelled HCCI-DI engine. Journal of Thermal Analysis and Calorimetry, 141(6), 2311–2324. https://doi.org/10.1007/S10973-020-09418-Z
  • Leo, G. M. L., Thodda, G., & Murugapoopathi, S. (2021). Experimental investigation on effects of gasoline premixed - Al2O3 additive blended fish oil biodiesel fuelled HCCI-DI engine. Journal of Physics: Conference Series, 2054(1), 012040. https://doi.org/10.1088/1742-6596/2054/1/012040
  • Li, Z., Liu, J., Ji, Q., Sun, P., Wang, X., & Xiang, P. (2023). Influence of hydrogen fraction and injection timing on in-cylinder combustion and emission characteristics of hydrogen-diesel dual-fuel engine. Fuel Processing Technology, 252, 107990. https://doi.org/10.1016/j.fuproc.2023.107990
  • Liao, H., Hu, F., Wu, X., Li, P., Ding, C., Yang, C., Zhang, T., & Liu, Z. (2024). Effects of H2 addition on the characteristics of the reaction zone and NOx mechanisms in MILD combustion of H2-rich fuels. International Journal of Hydrogen Energy, 58, 174–189. https://doi.org/10.1016/j.ijhydene.2024.01.154
  • Lionus Leo, G. M., Jayabal, R., Srinivasan, D., Chrispin Das, M., Ganesh, M., & Gavaskar, T. (2024). Predicting the performance and emissions of an HCCI-DI engine powered by waste cooking oil biodiesel with Al2O3 and FeCl3 nano additives and gasoline injection – A random forest machine learning approach. Fuel, 357. https://doi.org/10.1016/j.fuel.2023.129914
  • Lionus Leo, G. M., Murugapoopathi, S., Thodda, G., Baligidad, S. M., Jayabal, R., Nedunchezhiyan, M., & Devarajan, Y. (2023). Optimisation and environmental analysis of waste cashew nut shell oil biodiesel/cerium oxide nanoparticles blends and acetylene fumigation in agricultural diesel engine. Sustainable Energy Technologies and Assessments, 58, 103375. https://doi.org/10.1016/j.seta.2023.103375
  • Lionus Leo G.M., Jayabal R., Kathapillai A., Sekar S. (2025a). Performance and emissions optimization of a dual-fuel diesel engine powered by cashew nut shell oil biodiesel/hydrogen gas using response surface methodology. Fuel, 384, https://doi.org/j.fuel.2024.133960
  • Lionus Leo G.M., Jayabal R., Chrispin Das M., Arivazhagan S. (2025b). An experimental investigation on enhancing diesel engine performance and emissions with cashew nut shell oil biodiesel and hydrogen fumigation. Environment, Development and Sustainability. https://doi.org/s10668-024-05565-7
  • Luo, J., Liu, Z., Wang, J., Xu, H., Tie, Y., Yang, D., Zhang, Z., Zhang, C., & Wang, H. (2022). Investigation of hydrogen addition on the combustion, performance, and emission characteristics of a heavy-duty engine fueled with diesel/natural gas. Energy, 260, 125082. https://doi.org/10.1016/J.ENERGY.2022.125082
  • Madihi, R., Pourfallah, M., Gholinia, M., Armin, M., & Ghadi, A. Z. (2022). Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2) / natural gas heavy-duty engine with RCCI mode (Part II: Fuel injection time/ Fuel injection rate). International Journal of Thermofluids, 16, 100200. https://doi.org/10.1016/j.ijft.2022.100200
  • Mary, L. L. G., Manivel, S., Garg, S., Nagam, V. B., Garse, K., Mali, R., Yunus Khan, T. M., & Baig, R. U. (2023). Exploring the Impact of Al2O3 Additives in Gasoline on HCCI-DI Engine Performance: An Experimental, Neural Network, and Regression Analysis Approach. ACS Omega, 8(50), 47701–47713. https://doi.org/10.1021/ACSOMEGA.3C05959
  • Mathiyazhagan, M., Meenakshi Sundaram, K., & Bupesh, G. (2022). Production and emission evaluation of neem biodiesel blends in a single cylinder diesel engine. Materials Today: Proceedings, 62, 2124–2132. https://doi.org/10.1016/j.matpr.2022.03.047
  • Mishra, A., Kulshrestha, S., Patel, F. M., Tiwari, N., & Sharma, A. (2024). Effect of piston bowl geometry and spray angle on engine performance and emissions in HCCI engine using multi‐stage injection strategy. Environmental Progress & Sustainable Energy, 43(2). https://doi.org/10.1002/ep.14203
  • Mohankumar, D., Indharajith, P., Sabarishankar, P., Sanjaykumar, V. T., Vignesh kumar, N., & Udhayakumar, N. (2023). Experimental investigation on performance, emission and combustion characteristics of neem oil bio diesel using ethanol blend. Materials Today: Proceedings, 80, 1525–1529. https://doi.org/10.1016/j.matpr.2023.01.352
  • Mohanrajhu N., Sekar S., Jayabal R., Sureshkumar R. (2024). Impact of Aluminum Nitrate and Graphene Oxide Nanoplate on Performance and Emission Characteristics of a CRDI Diesel Engine Powered by Industrial Leather Waste Fat Biodiesel. International Journal of Automotive Technology, https://doi.org/s12239-024-00205-5
  • Vellaiyan, S. (2025a). Optimization of hydrogen-enriched biodiesel-diesel dual-fuel combustion with EGR for sustainable engine performance. International Journal of Hydrogen Energy, 128, 85–94. https://doi.org/10.1016/j.ijhydene.2025.04.239
  • Vellaiyan, S. (2025b). Performance enhancement of a diesel engine using nanoparticle-enriched algae biodiesel-diesel blends with an electrostatic precipitator for nanoparticle emission control. Energy Conversion and Management, 326, 119457.https://doi.org/10.1016/j.enconman.2024.119457
  • Savaş, A., Uslu, S., & Şener, R. (2025). Optimization of performance and emission characteristics of a diesel engine fueled with MgCO3 nanoparticle doped second generation biodiesel from jojoba by using response surface methodology (RSM). Fuel, 381, 133658. https://doi.org/10.1016/j.fuel.2024.133658
  • Sekar, S., Chandrasekar, P., Kumar, S., Jospher, A. J. S., Sheeja, R., Valarmathi, T. N., & Lionus Leo, G. M. (2021). Entropy Generation Minimization of Vapour Absorption Heat Transformer. Lecture Notes in Mechanical Engineering, 265–274. https://doi.org/10.1007/978-981-33-4165-4_25
  • ŞENER, R. (2021). Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a CI Engine. International Journal of Advances in Engineering and Pure Sciences, 33(2), 299–307. https://doi.org/10.7240/jeps.829006
  • Sheik, M. A., Beemkumar, N., Gupta, A., Gill, A., Devarajan, Y., Jayabal, R., & Lionus Leo, G. M. (2024). Study the Effect of Silicon Nanofluid on the Heat Transfer Enhancement of Triangular-Shaped Open Microchannel Heat Sinks. Silicon, 16(1), 277–293. https://doi.org/10.1007/S12633-023-02663-5
  • Shivkumar, C., Amar, P., & Mitesh, G. (2021). Experimental Investigation on VCR Engine by Using Different Blend Proportions of Mexicana Oil Biodiesel. In Techno-Societal 2020 (pp. 437–443). Springer International Publishing. https://doi.org/10.1007/978-3-030-69925-3_43
  • Simhadri, K., Rao, P. S., & Paswan, M. (2024). Improving the combustion and emission performance of a diesel engine with TiO2 nanoparticle blended Mahua biodiesel at different injection pressures. International Journal of Thermofluids, 21, 100563. https://doi.org/10.1016/j.ijft.2024.100563
  • SivaPrasad, K., Rao, S. S., & Raju, V. R. K. (2022). Enhancement of mixture homogeneity for DI-CI engine to achieve Homogeneous Charge Compression Ignition (HCCI) combustion characteristics: a numerical approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 4318–4333. https://doi.org/10.1080/15567036.2022.2075058
  • Spanò, S., Savarese, M., Parente, A., Contino, F., & Jeanmart, H. (2024). Experimental and numerical investigation of methane combustion in a HCCI engine under enriched oxygen conditions. Fuel, 362, 130772. https://doi.org/10.1016/j.fuel.2023.130772
  • Subramani, S., Dana, S. S., Natesan, V. T., & Mary, L. L. G. (2020). Energy and exergy analysis of greenhouse drying of ivy gourd and turkey berry. Thermal Science, 24(1 Part B), 645–656. https://doi.org/10.2298/TSCI190602459S Tai, M., Vo, C., Duong, L., Do, A., Huynh, V., & Nguyen, H. (2023). Experimental Study on Combustion Characteristics of Biodiesel–Ethanol Dual Fuel: An Overview. Journal of Technical Education Science, 75A, 50–60. https://doi.org/10.54644/jte.75A.2023.1269
  • Varpe, B. R., & Kharde, Y. R. (2023). Combined effect of DEE and Jatropha biodiesel–diesel fuel blends on the enhancement of VCR diesel engine parameters at varying loads and compression ratios. Australian Journal of Mechanical Engineering, 21(5), 1843–1860. https://doi.org/10.1080/14484846.2022.2038405
  • Venkatesan, S. P., & Kadiresh, P. N. (2015). Effects of Nano-Sized Metal Oxide Additive on Performance and Exhaust Emissions of C I Engine. Applied Mechanics and Materials, 766–767, 389–395. https://doi.org/10.4028/www.scientific.net/AMM.766-767.389
  • Veza, I., Irianto, Tuan Hoang, A., Yusuf, A. A., Herawan, S. G., Soudagar, M. E. M., Samuel, O. D., Said, M. F. M., & Silitonga, A. S. (2023). Effects of Acetone-Butanol-Ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel, 333, 126377. https://doi.org/10.1016/j.fuel.2022.126377
  • Yasar, F., Uguz, G., & Kayunoglu, C. (2022). Change in Calculated Carbon Aromaticity Index (CCAI) Depending on Cetane Indexes of Biodiesel Fuels of Different Origins. 2022 Global Energy Conference (GEC), 352–356. https://doi.org/10.1109/GEC55014.2022.9986785
  • Zhang, L., Zhu, G., Chao, Y., Chen, L., & Ghanbari, A. (2023). Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools. Energy, 282, 128972. https://doi.org/10.1016/J.ENERGY.2023.128972
  • Zhang, S., Li, J., Tian, Y., Fang, S., Li, C., Yu, X.,... Yang, L. (2025). Probing the combustion characteristics of micron-sized aluminum particles enhanced with graphene fluoride. Combustion and Flame, 272, 113858. https://doi.org/10.1016/j.combustflame.2024.113858
  • Zhang, W., Shi, L., Xia, W., Du, Y., & Yao, L. (2025). Research on the anharmonic effect of main reactions of important intermediate species in NH3/DME mixed combustion. Chemical Physics Letters, 874-875, 142170. https://doi.org/10.1016/j.cplett.2025.142170
  • Zhang, Y., Zhong, Y., Wang, J., Tan, D., Zhang, Z., & Yang, D. (2021). Effects of Different Biodiesel-Diesel Blend Fuel on Combustion and Emission Characteristics of a Diesel Engine. Processes, 9(11), 2021. https://doi.org/10.3390/pr9111984
  • Zhu, L., Song, Y., Chen, H., Wang, M., Liu, Z., Wei, X.,... Ai, T. (2025). Optimization of power generation and sewage treatment in stacked pulsating gas-liquid-solid circulating fluidized bed microbial fuel cell using response surface methodology. International Journal of Hydrogen Energy, 101, 161-172. https://doi.org/10.1016/j.ijhydene.2024.12.397
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İçten Yanmalı Motorlar
Bölüm Araştırma Makalesi
Yazarlar

Lionus Leo G M 0000-0002-8165-9901

Sekar S 0000-0001-7827-6216

Ashwin Prabhu G 0000-0003-1278-6533

Prajith Prabakar 0000-0002-5744-9365

Gönderilme Tarihi 1 Şubat 2025
Kabul Tarihi 27 Mart 2025
Yayımlanma Tarihi 30 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 45 Sayı: 2

Kaynak Göster

APA G M, L. L., S, S., G, A. P., Prabakar, P. (2025). Optimizing Thermal Efficiency and Emissions in Hybrid HCCI-DI Combustion with Biodiesel-Diethyl Ether-Nanoparticle Blends. Isı Bilimi ve Tekniği Dergisi, 45(2), 193-206. https://doi.org/10.47480/isibted.1630463