Research Article
BibTex RIS Cite

A CONCISE ANALYTICAL TREATMENT OF ELASTIC RESPONSE OF A COOLING TWO-LAYER SOLID CYLINDER WITH DIFFERENT END AND BOUNDARY CONDITIONS

Year 2020, , 293 - 308, 31.10.2020
https://doi.org/10.47480/isibted.817047

Abstract

Analytical models are developed to estimate the transient elastic response of cooling two-layer solid cylinders with different end and boundary conditions. Such cylinders contain two layers that are in perfect contact. The hot assembly loses energy from its surface to either zero ambient by convection or by a prescribed lower surface temperature. In any case, as the cooling takes place slowly, the problem is amenable to use of the uncoupled theory of elasticity. A generalized plane strain solution is derived and then reduced to the state of plane strain by simply setting the axial strain equal to zero. The results of these solutions revealed that the radial and circumferential stresses remain unchanged by end conditions when the boundaries are free. However, in case of plane strain, the axial stress becomes the dominant stress component and it is much larger than that in free ends. Radially constrained boundaries create very large stresses in the assembly but the corresponding stress state is far away from yielding

References

  • Boley B. A. and Weiner, J. H., 1960, Theory of Thermal Stresses, Wiley, New York.
  • Carslaw H. S. and Jaeger J. C., 1959, Conduction of Heat in Solids (Sec. Ed.), Oxford University Press, Oxford.
  • Eraslan A. N. and Apatay T., 2015, Thermoelastic Stresses in a Rod Subjected to Periodic Boundary Condition: An Analytical Treatment, J. Multidisciplinary Eng. Sci. Tech., 2, 2438-2444.
  • Eraslan A. N and Apatay T., 2016, Analytical Solution to Thermal Loading and Unloading of a Cylinder Subjected to Periodic Surface Heating, J. Thermal Stresses, 39, 928-941.
  • Eraslan A. N. and Apatay T., 2017, Thermal Loading and Unloading of a Solid Cylinder Subjected to Periodic Internal Energy Cycling, ZAMM, 97, 340-357.
  • Hahn W. D. and Özışık M. N., 2012, Heat Conduction, John Wiley & Sons, New Jersey.
  • Hetnarski B. H. and Eslami M. R., 2009, Thermal Stresses-Advanced Theory and Applications, Springer, Netherlands.
  • Ishikawa H., 1978, A Thermoelastoplastic Solution for a Circular Solid Cylinder Subjected to Heating and Cooling, J. Thermal Stresses, 1, 211-222.
  • Jane K. C. and Lee Z. Y., 1999, Thermoelastic Transient Response of an Infinitely Long Annular Multilayered Cylinder, Mech. Res. Comm., 26, 709-718.
  • Kandil A., El-Kady A. A. and El-Kafrawy A., 1995, Transient Thermal Stress Analysis of Thick-Walled Cylinders, Int. J. Mech. Sci., 37, 721-732.
  • Lee Z. Y., 2006, Generalized Coupled Transient Thermoelastic Problem of Multilayered Hollow Cylinder with Hybrid Boundary Conditions, Int. Comm. Heat Mass Transfer, 33, 518-528. Lee Z. -Y., Chen C. K. and Hung C. -I., 2001, Transient Thermal Stress Analysis of Multilayered Hollow Cylinder, Acta Mechanica, 151, 75-88.
  • Lu X., Tervola P. and Viljanen M., 2006a, Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder, Int. J. Heat Mass Transfer, 49, 341-348.
  • Lu X., Tervola P. and Viljanen M., 2006b, Transient Analytical Solution to Heat Conduction in Multi-Dimensional Composite Cylinder Slab, Int. J. Heat Mass Transfer, 49, 1107-1114.
  • Lu X. and Viljanen M., 2006, An Analytical Method to Solve Heat Conduction in Layered Spheres with Time-Dependent Boundary Conditions, Phys. Lett. A, 351, 274-282.
  • Mashat D. S., Zenkour A. M. and Elsibai K. A., 2010, Transient Response of Multilayered Hollow Cylinder Using Various Theories of Generalized Thermoelasticity, Natural Science, 2, 1171-1179.
  • Monte F. D., 2002, An Analytic Approach to the Unsteady Heat Conduction Processes in One-Dimensional Composite Media, Int. J. Heat Mass Transfer, 45, 1333-1343.
  • Noda N., Hetnarski R. B. and Tanigawa Y., 2003, Thermal Stresses (Sec. Ed.), Taylor and Francis, New York.
  • Özışık M. N., 1980, Heat Conduction, Wiley, New York.
  • Pardo E., Sarmiento G. S., Laura P. A. A. and Gutierrez R. H., 1987, Analytical Solution for Unsteady Thermal Stresses in an Infinite Cylinder Composed of Two Materials, J. Thermal Stresses, 10, 29-43.
  • Rees D. W. A., 1990, The Mechanics of Solids and Structures, McGraw-Hill, London, New York.
  • Singh S., Jain P. K. and Rizwan-uddin, 2008, Analytical Solution to Transient Heat Conduction in Polar Coordinates with Multiple Layers in Radial Direction, Int. J. Therm. Sci., 47, 261-273.
  • Sun Y. and Wichman I. S., 2004, On Transient Heat Conduction in a One-Dimensional Composite Slab, Int. J. Heat Mass Transfer, 47, 1555-1559.
  • Tanigawa Y., Takeuti Y. and Ueshima K., 1984, Transient Thermal Stresses of Solid and Hollow Spheres with Spherically Isotropic Thermoelastic Properties, Ingenieur-Archiv, 54, 259-267.
  • Thomas J. R., Singh J. P., Tawil H., Powers L. and Hasselma D. P. H., 1985, Thermal Stresses in a Long Circular Cylinder Subjected to Sudden Cooling During Transient Convection Heating, J. Thermal Stresses, 8, 249-260.
  • Timoshenko S. and Goodier J. N., 1970, Theory of Elasticity, McGraw-Hill, New-York.
  • Wang H. M., Ding H. J. and Chen Y. M., 2004, Thermoelastic Dynamic Solution of a Multilayered Spherically Isotropic Hollow Sphere for Spherically Symmetric Problems, Acta Mechanica, 173, 131-145.
  • Yu-Ching Y. and Cha’o-Kuang C., 1986, Thermoelastic Transient Response of Infinitely Long Annular Cylinder Composed of Two Different Materials, Int. J. Eng. Sci., 24, 569-581.

İKİ KATMANLI DOLU BİR SİLİNDİRİN ELASTİK DAVRANIŞININ FARKLI UÇ VE SINIR KOŞULLARI İÇİN ANALİTİK OLARAK İNCELENMESİ

Year 2020, , 293 - 308, 31.10.2020
https://doi.org/10.47480/isibted.817047

Abstract

İki katmanlı dolu silindirlerin zamana bağlı termoelastik davranışlarının farklı uç ve sınır koşulları için belirlenmesi amacıyla analitik modeller geliştirilmiştir. Söz konusu silindirler, aralarında mükemmel temas olan iki katmandan oluşmaktadır. Başlangıçta sıcak olan silindir, yüzeyinden konveksiyon yolu ile sıfır derecelik çevresel sıcaklığa veya önceden daha düşük olarak belirlenen yüzey sıcaklığına ulaşana kadar enerji kaybetmektedir. Tüm durumlarda soğuma yavaş bir biçimde gerçekleştiğinden problemde kuplajsız elastisite teorisinin kullanılması mümkün olmuştur. Genelleştirilmiş düzlemsel şekil değiştirme çözümü elde edilmiş ve bu çözüm, eksenel yöndeki birim şekil değiştirmeyi sıfıra eşitleyerek düzlemsel şekil değiştirme durumuna ait çözüme indirgenmiştir. Bu çözümlere ait sonuçlar, sınır koşullarının serbest olduğu durumlarda radyal ve teğetsel yöndeki gerilmelerin uç koşullarına göre değişmediğini göstermiştir. Ancak düzlemsel şekil değiştirme durumunda, eksenel gerilme baskın gerilme olmakta ve uçların serbest olduğu duruma göre oldukça yüksek değerlere ulaşmaktadır. Kompozit silindirin eksenel ve radyal yönde yer değiştirmesinin kısıtlanması büyük gerilmelere yol açmasına rağmen ilgili gerilme durumu silindirde akmaya yol açmamaktadır.

References

  • Boley B. A. and Weiner, J. H., 1960, Theory of Thermal Stresses, Wiley, New York.
  • Carslaw H. S. and Jaeger J. C., 1959, Conduction of Heat in Solids (Sec. Ed.), Oxford University Press, Oxford.
  • Eraslan A. N. and Apatay T., 2015, Thermoelastic Stresses in a Rod Subjected to Periodic Boundary Condition: An Analytical Treatment, J. Multidisciplinary Eng. Sci. Tech., 2, 2438-2444.
  • Eraslan A. N and Apatay T., 2016, Analytical Solution to Thermal Loading and Unloading of a Cylinder Subjected to Periodic Surface Heating, J. Thermal Stresses, 39, 928-941.
  • Eraslan A. N. and Apatay T., 2017, Thermal Loading and Unloading of a Solid Cylinder Subjected to Periodic Internal Energy Cycling, ZAMM, 97, 340-357.
  • Hahn W. D. and Özışık M. N., 2012, Heat Conduction, John Wiley & Sons, New Jersey.
  • Hetnarski B. H. and Eslami M. R., 2009, Thermal Stresses-Advanced Theory and Applications, Springer, Netherlands.
  • Ishikawa H., 1978, A Thermoelastoplastic Solution for a Circular Solid Cylinder Subjected to Heating and Cooling, J. Thermal Stresses, 1, 211-222.
  • Jane K. C. and Lee Z. Y., 1999, Thermoelastic Transient Response of an Infinitely Long Annular Multilayered Cylinder, Mech. Res. Comm., 26, 709-718.
  • Kandil A., El-Kady A. A. and El-Kafrawy A., 1995, Transient Thermal Stress Analysis of Thick-Walled Cylinders, Int. J. Mech. Sci., 37, 721-732.
  • Lee Z. Y., 2006, Generalized Coupled Transient Thermoelastic Problem of Multilayered Hollow Cylinder with Hybrid Boundary Conditions, Int. Comm. Heat Mass Transfer, 33, 518-528. Lee Z. -Y., Chen C. K. and Hung C. -I., 2001, Transient Thermal Stress Analysis of Multilayered Hollow Cylinder, Acta Mechanica, 151, 75-88.
  • Lu X., Tervola P. and Viljanen M., 2006a, Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder, Int. J. Heat Mass Transfer, 49, 341-348.
  • Lu X., Tervola P. and Viljanen M., 2006b, Transient Analytical Solution to Heat Conduction in Multi-Dimensional Composite Cylinder Slab, Int. J. Heat Mass Transfer, 49, 1107-1114.
  • Lu X. and Viljanen M., 2006, An Analytical Method to Solve Heat Conduction in Layered Spheres with Time-Dependent Boundary Conditions, Phys. Lett. A, 351, 274-282.
  • Mashat D. S., Zenkour A. M. and Elsibai K. A., 2010, Transient Response of Multilayered Hollow Cylinder Using Various Theories of Generalized Thermoelasticity, Natural Science, 2, 1171-1179.
  • Monte F. D., 2002, An Analytic Approach to the Unsteady Heat Conduction Processes in One-Dimensional Composite Media, Int. J. Heat Mass Transfer, 45, 1333-1343.
  • Noda N., Hetnarski R. B. and Tanigawa Y., 2003, Thermal Stresses (Sec. Ed.), Taylor and Francis, New York.
  • Özışık M. N., 1980, Heat Conduction, Wiley, New York.
  • Pardo E., Sarmiento G. S., Laura P. A. A. and Gutierrez R. H., 1987, Analytical Solution for Unsteady Thermal Stresses in an Infinite Cylinder Composed of Two Materials, J. Thermal Stresses, 10, 29-43.
  • Rees D. W. A., 1990, The Mechanics of Solids and Structures, McGraw-Hill, London, New York.
  • Singh S., Jain P. K. and Rizwan-uddin, 2008, Analytical Solution to Transient Heat Conduction in Polar Coordinates with Multiple Layers in Radial Direction, Int. J. Therm. Sci., 47, 261-273.
  • Sun Y. and Wichman I. S., 2004, On Transient Heat Conduction in a One-Dimensional Composite Slab, Int. J. Heat Mass Transfer, 47, 1555-1559.
  • Tanigawa Y., Takeuti Y. and Ueshima K., 1984, Transient Thermal Stresses of Solid and Hollow Spheres with Spherically Isotropic Thermoelastic Properties, Ingenieur-Archiv, 54, 259-267.
  • Thomas J. R., Singh J. P., Tawil H., Powers L. and Hasselma D. P. H., 1985, Thermal Stresses in a Long Circular Cylinder Subjected to Sudden Cooling During Transient Convection Heating, J. Thermal Stresses, 8, 249-260.
  • Timoshenko S. and Goodier J. N., 1970, Theory of Elasticity, McGraw-Hill, New-York.
  • Wang H. M., Ding H. J. and Chen Y. M., 2004, Thermoelastic Dynamic Solution of a Multilayered Spherically Isotropic Hollow Sphere for Spherically Symmetric Problems, Acta Mechanica, 173, 131-145.
  • Yu-Ching Y. and Cha’o-Kuang C., 1986, Thermoelastic Transient Response of Infinitely Long Annular Cylinder Composed of Two Different Materials, Int. J. Eng. Sci., 24, 569-581.
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Tolga Akış This is me 0000-0002-6754-4497

Ahmet Eraslan This is me 0000-0002-1158-0042

Publication Date October 31, 2020
Published in Issue Year 2020

Cite

APA Akış, T., & Eraslan, A. (2020). A CONCISE ANALYTICAL TREATMENT OF ELASTIC RESPONSE OF A COOLING TWO-LAYER SOLID CYLINDER WITH DIFFERENT END AND BOUNDARY CONDITIONS. Isı Bilimi Ve Tekniği Dergisi, 40(2), 293-308. https://doi.org/10.47480/isibted.817047