Research Article
BibTex RIS Cite

TUNҪBİLEK TERMİK SANTRALİNİN 150MWe ÜNİTESİNDE PÜLVERİZE KÖMÜRÜN BİYOKÜTLE İLE EŞ YANMASININ HESAPLAMALI ANALİZİ

Year 2021, , 37 - 50, 30.04.2021
https://doi.org/10.47480/isibted.979314

Abstract

References

  • Acikkalp, E., Zeng, T., Ortwein, A., Burkhardt, H. and Klenk W., 2018, Exergy, Exergoeconomic and Enviroeconomic Evaluation in a Biomass-Steam Engine Micro-CHP System, Chemical Engineering and Technology, 41(11), 2141-2149.
  • ANSYS Fluent Theory Guide, 2019, Release 2019 R3, ANSYS Inc., Canonsburg.
  • Atimtay, A. T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H. and Atakul, H., 2017, Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System, Bioresource Technology, 224, 601-610.
  • Aydin, Ö., 2013, Tunçbilek Termik Santralinde Kömür Kazan Uyumunun Araştırılması, TÜBITAK Araştırma Projesi Gelişme Raporu, Proje No. 112M871.
  • Aydin, Ö. and Durak, M. M., 2012, The Effect of Temperature Distribution on Tube Rupture, Journal of Thermal Science and Technology, 7(4), 753-766.
  • Badzioch, S. and Hawskley, 1970, Kinetics of Thermal Decomposition of Pulverized Coal Particles, Industrial & Engineering Chemistry Process Design and Development, 9, 521-530.
  • Baum, M. M. and Street, P.J., 1971, Predicting the Combustion Behaviour of Coal Particles, Combustion Science and Technology, 3, 231-243.
  • Benim, A. C., 1988, A Finite Element Solution of Radiative Heat Transfer in Participating Media Utilizing the Moment Method, Computer Methods in Applied Mechanics and Engineering, 67(1), 1-14. Benim, A. C., 1990, Finite Element Analysis of Confined Turbulent Swirling Flows, International Journal for Numerical Methods in Fluids, 11, 697-717.
  • Benim, A. C., Epple, B. and Krohmer, B., 2005, Modelling of Pulverised Coal Combustion by a Eulerian-Eulerian Two-Phase Flow Formulation, Progress in Computational Fluid Dynamics – An International Journal, 5(6), 345-361.
  • Benim, A. C., Iqbal. S., Meier, W., Joos, F. and Wiedermann, A., 2017, Numerical Investigation of Turbulent Swirling Flames with Validation in a Gas Turbine Model Combustor, Applied Thermal Engineering, 110, 202-212.
  • Benim, A. C. and Kuppa, K., 2016, Modeling of Entrained-Flow Coal Gasification by an Eulerian-Eulerian Two-Phase Flow Formulation, Isi Bilimi ve Teknigi Dergisi / Journal of Thermal Science and Technology, 36(2), 93-102.
  • Benim, A. C., Stegelitz, P. and Epple, B., 2005, Simulation of the Two-Phase Flow in a Laboratory Coal Pulveriser, Forschung im Ingenieurwesen – Engineering Research, 69, 197-204.
  • Bhattacharyya, S., Chattopadhyay, H. and Benim, A. C., 2017, Computational Investigation of Heat Transfer Enhancement by Alternating Inclined Ribs in Tubular Heat Exchanger, Progress in Computational Fluid Dynamics – An International Journal, 17(6), 390-396.
  • Bhuiyan, A. A. and Naser, J., 2015a, Numerical Modeling of Biomass Co-Combustion with Pulverized Coal in a Small Scale Furnace, Procedia Engineering, 105, 504-511.
  • Bhuiyan, A. A. and Naser, J., 2015b, CFD Modelling of Co-Firing of Biomass with Coal under Oxy-Fuel Combustion in a Large Scale Power Plant, Fuel, 159, 150-168.
  • Dryer, F. L. and Glassmann, L., 1973, High Temperature Oxidation of CO and CH4, Proceedings of the 14th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh.
  • DuBois, E. and Mercier A. (Eds.), 2009, Energy Recovery, Nova Science Publishers, New York.
  • Ebling, D. G., Krumm, A., Pfeiffelmann, B., Gottschald, J., Bruchmann, J., Benim, A. C., M. Adam, M., Labs, R., Herbertz, R. R. and Stunz, A., 2016, Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes, Journal of Electronic Materials, 45(7), 3433-3439.
  • Ehrlich, R., 2013, Renewable Energy, CRC Press, Boca Raton. Epple. B., Leithner, R., Linzer, W. and Walter H. (Eds.), 2012, Simulation von Kraftwerken und Feuerungen, Springer, Vienna.
  • Field, M. A., Gill, D. W., Morgan, B. B. and Hawskley, 1967, Combustion of Pulverized Coal, The British Coal Utilization Research Association, Letherhead.
  • Gosman A. D. and Ioannides, E., 1983, Aspects of Computer Simulation of Liquid-Fuelled Combustors, Journal of Energy, 7(6), 482–490.
  • Hein, K. R. G. and Spliethoff, 1995, Co-combustion of Coal and Biomass in Pulverized Fuel and Fluidized Bed Systems, The Institute of Energy’s Second International Conference on Combustion & Emissions Control, 127-136.
  • Heinzel, T., Siegle, V., Spliethoff H. and Hein, K. R. G., 1998, Investigation of Slagging in Pulverized Fuel Co-Combustion of Biomass and Coal at a Pilot-Scale Test Facility, Fuel Processing Technology, 54 (1-3),109-125.
  • Kaltschmitt, M. (Ed.), 2019, Energy from Organic Materials, Springer, New York.
  • Kaltschmitt, M., Hartmann, H. and Hofbauer, H. (Eds), 2016, Energie aus Biomasse, 3rd ed., Springer, Berlin.
  • Kim, J. P., Schnell, U., Scheffknecht, G., and Benim, A. C., 2007, Numerical Modelling of MILD Combustion for Coal, Progress in Computational Fluid Dynamics – An International Journal, 7(6), 337-346.
  • Launder, B. E. and Spalding, D. B., 1974, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.
  • Lefebvre, A. H. and McDonnel, V. G., 2017, Atomization and Sprays, 2nd ed., CRC Press, Boca Raton.
  • Libby, P. A. and Williams. F. A., 1994, Turbulent Reacting Flows, Academic Press, Cambridge.
  • Madjeski, P., 2018, Coal Combustion Modelling in a Frontal Pulverized Coal-Fired Boiler, E3S Web of Conferences, 46, 00010.
  • Magnussen, B. F. and B. H. Hjertager, 1976, On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, Proceedings of the 16th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 719-729.
  • Menter, F. R., 1994, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 32(8), 1598-1605. Morsi, S. A. and Alexander, A. J., 2006, An Investigation of Particle Trajectories in Two-Phase Flow Systems, Journal of Fluid Mechanics, 55(2), 193-208.
  • Munir, S., Nimmo, W. and Gibbs, B. M., 2011. The Effect of Air-Staged, Co-Combustion of Pulverised Coal and Biomass Blends on NOx Emissions and Combustion Efficiency, Fuel, 90, 126-135.
  • Neves, D., Thunman, H., Matos, A., Tarelho, L. and Gomez-Barea, A., 2011, Progress in Energy and Combustion Science, 27, 611-630.
  • Nimmo, W., Daood, S. S. and Gibbs, B. M., 2010, The Effect of O2 Enrichment on NOx Formation in Biomass Co-Fired Pulverised Coal Combustion, Fuel, 89, 2945-2952.
  • Ozdemir, F. and Boke. E., 2015, Tunçbilek Termik Santrali 5 Ünite Kazanının Sayısal Modellemesi, 13. Uluslararası Yanma Sempozyumu, Bursa, 9 Eylül 2015.
  • Pérez-Jeldres, R., Cornejo, P., Flores, M., Gordon, A. and Garcia.X., 2017, A Modeling Approach to Co-Firing Biomass/Coal Blends in Pulverized Coal Utility Boilers: Synergetistic Effects and Emissions Profiles, Energy, 120, 663-674.
  • Ranz W. E. and Marshall, Jr. W. R., 1952, Evaporation from Drops, Part I and Part II, Chemical Engineering Progress, 48(4), 173–180.
  • Shi, X., Gao, J. and Lan, X., 2019, Modelling the Pyrolysis if a Centimeter-Sized Biomass Particle, Chemical Engineering Technology, 2019, 42(12), 2574-2579.
  • Smith, J. D., Alembath, A., Al-Rubaye, H., Yu, J., Gao, X. and Golpour, H., 2019, Validation and Application of a Kinetic Model for Downdraft Biomass Gasification Simulation, Chemical Engineering and Technology, 42(12), 2505-2519.
  • Smith, T. F., Shen, Z. F. and Friedman, J. N., 1982, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, Journal of Heat Transfer, 104, 602–608.
  • Stephan, A., Wolf, C., Fendt, S. and Spliethoff, H., 2017, Online Corrosion Measurements in Small- and Mid-Scale During Pulverized Biomass/Coal Co-Combustion, Energy Procedia, 120, 309-316.
  • Tamura, M., Watanabe, S., Kotake, N. and Hasegawa, M., 2014, Grinding and Combustion Characteristics of Woody Biomass for Co-Firing with Pulverised Coal Boilers, Fuel, 134, 544-553.
  • Turns, S. R., 2012, An Introduction to Combustion, 3rd ed., McGraw-Hill, New York.
  • Yilmazoglu, M. Z. and Durmaz, A., 2012, Thermodynamic Analysis of an Integrated Gasification Combined Cycle Power Plant, Isi Bilimi ve Teknigi Dergisi / Journal of Thermal Science and Technology, 32, 43-53.
  • Westbrook, C. K. and Dryer, F. L., 1981, Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames, Combustion Science and Technology, 27, 31-43.

COMPUTATIONAL ANALYSIS OF PULVERIZED COAL CO-FIRING WITH BIOMASS IN 150MWe UNIT OF TUNCBILEK THERMAL POWER PLANT

Year 2021, , 37 - 50, 30.04.2021
https://doi.org/10.47480/isibted.979314

Abstract

Pulverized coal and biomass co-firing in the 150MWe unit of Tuncbilek power plant is computationally investigated, within the scope of a preliminary feasibility study. The considered furnace, burning Turkish lignite, has totally eighteen burners, positioned at three different levels. First, the pulverized coal combustion in the furnace is calculated and the predicted temperatures in the boiler first pass are compared with the previous measurements. Subsequently, a co-firing scenario is computationally analyzed, where the burners of the lowest level that supply 43% of the total fuel mass are fed by biomass, instead of coal. Turkish red pine is assumed to be the source of the biomass. In replacing the coal by biomass, the mass flow rates of the biomass and the corresponding air are adjusted in such a way that the thermal load and the equivalence ratio remain unaltered. Due to the lack of more accurate data for the biomass, the rate constants for the pyrolysis and chemical conversion of biomass are assumed to be the same as those of coal, along with the assumption of the same particle size distribution for both fuels. It is observed that the resulting flame structure for the case of co-firing is very similar to that of coal combustion. This result is encouraging for the application of biomass co-firing in the considered furnace.

References

  • Acikkalp, E., Zeng, T., Ortwein, A., Burkhardt, H. and Klenk W., 2018, Exergy, Exergoeconomic and Enviroeconomic Evaluation in a Biomass-Steam Engine Micro-CHP System, Chemical Engineering and Technology, 41(11), 2141-2149.
  • ANSYS Fluent Theory Guide, 2019, Release 2019 R3, ANSYS Inc., Canonsburg.
  • Atimtay, A. T., Kayahan, U., Unlu, A., Engin, B., Varol, M., Olgun, H. and Atakul, H., 2017, Co-firing of Pine Chips with Turkish Lignites in 750 kWth Circulating Fluidized Bed Combustion System, Bioresource Technology, 224, 601-610.
  • Aydin, Ö., 2013, Tunçbilek Termik Santralinde Kömür Kazan Uyumunun Araştırılması, TÜBITAK Araştırma Projesi Gelişme Raporu, Proje No. 112M871.
  • Aydin, Ö. and Durak, M. M., 2012, The Effect of Temperature Distribution on Tube Rupture, Journal of Thermal Science and Technology, 7(4), 753-766.
  • Badzioch, S. and Hawskley, 1970, Kinetics of Thermal Decomposition of Pulverized Coal Particles, Industrial & Engineering Chemistry Process Design and Development, 9, 521-530.
  • Baum, M. M. and Street, P.J., 1971, Predicting the Combustion Behaviour of Coal Particles, Combustion Science and Technology, 3, 231-243.
  • Benim, A. C., 1988, A Finite Element Solution of Radiative Heat Transfer in Participating Media Utilizing the Moment Method, Computer Methods in Applied Mechanics and Engineering, 67(1), 1-14. Benim, A. C., 1990, Finite Element Analysis of Confined Turbulent Swirling Flows, International Journal for Numerical Methods in Fluids, 11, 697-717.
  • Benim, A. C., Epple, B. and Krohmer, B., 2005, Modelling of Pulverised Coal Combustion by a Eulerian-Eulerian Two-Phase Flow Formulation, Progress in Computational Fluid Dynamics – An International Journal, 5(6), 345-361.
  • Benim, A. C., Iqbal. S., Meier, W., Joos, F. and Wiedermann, A., 2017, Numerical Investigation of Turbulent Swirling Flames with Validation in a Gas Turbine Model Combustor, Applied Thermal Engineering, 110, 202-212.
  • Benim, A. C. and Kuppa, K., 2016, Modeling of Entrained-Flow Coal Gasification by an Eulerian-Eulerian Two-Phase Flow Formulation, Isi Bilimi ve Teknigi Dergisi / Journal of Thermal Science and Technology, 36(2), 93-102.
  • Benim, A. C., Stegelitz, P. and Epple, B., 2005, Simulation of the Two-Phase Flow in a Laboratory Coal Pulveriser, Forschung im Ingenieurwesen – Engineering Research, 69, 197-204.
  • Bhattacharyya, S., Chattopadhyay, H. and Benim, A. C., 2017, Computational Investigation of Heat Transfer Enhancement by Alternating Inclined Ribs in Tubular Heat Exchanger, Progress in Computational Fluid Dynamics – An International Journal, 17(6), 390-396.
  • Bhuiyan, A. A. and Naser, J., 2015a, Numerical Modeling of Biomass Co-Combustion with Pulverized Coal in a Small Scale Furnace, Procedia Engineering, 105, 504-511.
  • Bhuiyan, A. A. and Naser, J., 2015b, CFD Modelling of Co-Firing of Biomass with Coal under Oxy-Fuel Combustion in a Large Scale Power Plant, Fuel, 159, 150-168.
  • Dryer, F. L. and Glassmann, L., 1973, High Temperature Oxidation of CO and CH4, Proceedings of the 14th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh.
  • DuBois, E. and Mercier A. (Eds.), 2009, Energy Recovery, Nova Science Publishers, New York.
  • Ebling, D. G., Krumm, A., Pfeiffelmann, B., Gottschald, J., Bruchmann, J., Benim, A. C., M. Adam, M., Labs, R., Herbertz, R. R. and Stunz, A., 2016, Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes, Journal of Electronic Materials, 45(7), 3433-3439.
  • Ehrlich, R., 2013, Renewable Energy, CRC Press, Boca Raton. Epple. B., Leithner, R., Linzer, W. and Walter H. (Eds.), 2012, Simulation von Kraftwerken und Feuerungen, Springer, Vienna.
  • Field, M. A., Gill, D. W., Morgan, B. B. and Hawskley, 1967, Combustion of Pulverized Coal, The British Coal Utilization Research Association, Letherhead.
  • Gosman A. D. and Ioannides, E., 1983, Aspects of Computer Simulation of Liquid-Fuelled Combustors, Journal of Energy, 7(6), 482–490.
  • Hein, K. R. G. and Spliethoff, 1995, Co-combustion of Coal and Biomass in Pulverized Fuel and Fluidized Bed Systems, The Institute of Energy’s Second International Conference on Combustion & Emissions Control, 127-136.
  • Heinzel, T., Siegle, V., Spliethoff H. and Hein, K. R. G., 1998, Investigation of Slagging in Pulverized Fuel Co-Combustion of Biomass and Coal at a Pilot-Scale Test Facility, Fuel Processing Technology, 54 (1-3),109-125.
  • Kaltschmitt, M. (Ed.), 2019, Energy from Organic Materials, Springer, New York.
  • Kaltschmitt, M., Hartmann, H. and Hofbauer, H. (Eds), 2016, Energie aus Biomasse, 3rd ed., Springer, Berlin.
  • Kim, J. P., Schnell, U., Scheffknecht, G., and Benim, A. C., 2007, Numerical Modelling of MILD Combustion for Coal, Progress in Computational Fluid Dynamics – An International Journal, 7(6), 337-346.
  • Launder, B. E. and Spalding, D. B., 1974, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289.
  • Lefebvre, A. H. and McDonnel, V. G., 2017, Atomization and Sprays, 2nd ed., CRC Press, Boca Raton.
  • Libby, P. A. and Williams. F. A., 1994, Turbulent Reacting Flows, Academic Press, Cambridge.
  • Madjeski, P., 2018, Coal Combustion Modelling in a Frontal Pulverized Coal-Fired Boiler, E3S Web of Conferences, 46, 00010.
  • Magnussen, B. F. and B. H. Hjertager, 1976, On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, Proceedings of the 16th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 719-729.
  • Menter, F. R., 1994, Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 32(8), 1598-1605. Morsi, S. A. and Alexander, A. J., 2006, An Investigation of Particle Trajectories in Two-Phase Flow Systems, Journal of Fluid Mechanics, 55(2), 193-208.
  • Munir, S., Nimmo, W. and Gibbs, B. M., 2011. The Effect of Air-Staged, Co-Combustion of Pulverised Coal and Biomass Blends on NOx Emissions and Combustion Efficiency, Fuel, 90, 126-135.
  • Neves, D., Thunman, H., Matos, A., Tarelho, L. and Gomez-Barea, A., 2011, Progress in Energy and Combustion Science, 27, 611-630.
  • Nimmo, W., Daood, S. S. and Gibbs, B. M., 2010, The Effect of O2 Enrichment on NOx Formation in Biomass Co-Fired Pulverised Coal Combustion, Fuel, 89, 2945-2952.
  • Ozdemir, F. and Boke. E., 2015, Tunçbilek Termik Santrali 5 Ünite Kazanının Sayısal Modellemesi, 13. Uluslararası Yanma Sempozyumu, Bursa, 9 Eylül 2015.
  • Pérez-Jeldres, R., Cornejo, P., Flores, M., Gordon, A. and Garcia.X., 2017, A Modeling Approach to Co-Firing Biomass/Coal Blends in Pulverized Coal Utility Boilers: Synergetistic Effects and Emissions Profiles, Energy, 120, 663-674.
  • Ranz W. E. and Marshall, Jr. W. R., 1952, Evaporation from Drops, Part I and Part II, Chemical Engineering Progress, 48(4), 173–180.
  • Shi, X., Gao, J. and Lan, X., 2019, Modelling the Pyrolysis if a Centimeter-Sized Biomass Particle, Chemical Engineering Technology, 2019, 42(12), 2574-2579.
  • Smith, J. D., Alembath, A., Al-Rubaye, H., Yu, J., Gao, X. and Golpour, H., 2019, Validation and Application of a Kinetic Model for Downdraft Biomass Gasification Simulation, Chemical Engineering and Technology, 42(12), 2505-2519.
  • Smith, T. F., Shen, Z. F. and Friedman, J. N., 1982, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, Journal of Heat Transfer, 104, 602–608.
  • Stephan, A., Wolf, C., Fendt, S. and Spliethoff, H., 2017, Online Corrosion Measurements in Small- and Mid-Scale During Pulverized Biomass/Coal Co-Combustion, Energy Procedia, 120, 309-316.
  • Tamura, M., Watanabe, S., Kotake, N. and Hasegawa, M., 2014, Grinding and Combustion Characteristics of Woody Biomass for Co-Firing with Pulverised Coal Boilers, Fuel, 134, 544-553.
  • Turns, S. R., 2012, An Introduction to Combustion, 3rd ed., McGraw-Hill, New York.
  • Yilmazoglu, M. Z. and Durmaz, A., 2012, Thermodynamic Analysis of an Integrated Gasification Combined Cycle Power Plant, Isi Bilimi ve Teknigi Dergisi / Journal of Thermal Science and Technology, 32, 43-53.
  • Westbrook, C. K. and Dryer, F. L., 1981, Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames, Combustion Science and Technology, 27, 31-43.
There are 46 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Cansu Denız This is me 0000-0001-5564-0919

Yakup Boke This is me 0000-0003-0449-0329

Ozer Aydın This is me 0000-0002-6397-5601

Ali Benim This is me 0000-0002-8642-2225

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Denız, C., Boke, Y., Aydın, O., Benim, A. (2021). COMPUTATIONAL ANALYSIS OF PULVERIZED COAL CO-FIRING WITH BIOMASS IN 150MWe UNIT OF TUNCBILEK THERMAL POWER PLANT. Isı Bilimi Ve Tekniği Dergisi, 41(1), 37-50. https://doi.org/10.47480/isibted.979314