Research Article
BibTex RIS Cite

SU2 GERÇEK GAZ MODELLERİNİN SOĞUK GAZ İTİCİSİ PERFORMANS TAHMİNLERİ

Year 2021, , 77 - 88, 30.04.2021
https://doi.org/10.47480/isibted.979351

Abstract

Soğuk gaz itki sistemleri 1960’lı yıllardan bu yana özellikle uyduların yörünge kontrolünde tercih edilen sistemler olmuşlardır.Yakıt tankındaki yüksek basıncın görev süresince azalması nedeniyle, tank içindeki yakıtta oldukça düşük sıcaklıklar gözlenmektedir. Ayrıca itici lülesinin çıkışında da, vakuma yakın basınçlara genleşen yakıtın sıcaklığı oldukça düşmektedir. Bu koşullar altında, itki sisteminin performansının tasarım sürecinde gerçekçi olarak tahmin edilebilmesi için, açık kaynaklı, sıkıştırılabilir akışkanlar için uygun bir hesaplamalı akışkanlar dinamiği aracı olan SU2’nun kullanılması kararlaştırılmıştır. Bu çalışmada, itki sisteminin doğası gereği karşılaşılan düşük sıcaklık ve basınç etkilerinin doğru modellenebilmesi adına, SU2’nun ideal gaz, van-der Waals ve Peng-Robinson gaz modelleri kullanılarak elde edilen performans tahminleri ile itici vakum odası performans test sonuçları karşılaştırılmıştır. İtici performans testleri için bu amaçla kurulan termal vakum odası test alt yapısı kullanılmıştır. İtici simulasyonları ve performans testleri, yakıt tankının nominal ve düşük sıcaklıkta koşulladırıldığı durumlar için yürütülmüştür. Elde edilen veriler, SU2 van der Waals gaz modelinin, her iki sıcaklık koşulunda da vakum odası performans testlerine en yakın sonuçları verdiğini göstermektedir.

References

  • Aksel, M. H., 2011, Fluid Mechanics. Middle East Technical University.
  • Anis, A., 2012, Cold Gas Propulsion System - An Ideal Choice for Remote Sensing Small Satellites. Remote Sensing - Advanced Techniques and Platforms, IntechOpen.
  • Anis, A., 2008, Design & Development of Cold Gas Propulsion System for Pakistan Remote Sensing Satellite (PRSS). 2nd International Conference on Advances in Space Technologies, pp. 49–53, IEEE.
  • Bzibziak, R., 2000, Update of Cold Gas Propulsion at MOOG. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit.
  • Dorado, V., Grunder, Z., Schaefer, B., Sung, M., & Pedersen, K., 2013, NASA Marshall Space Flight Center Tri-gas Thruster Performance Characterization. AIAA/ASME/SAE/ASEE Joint Propulsion Conference
  • Greer, H., & Griep, D.J., 1967, Dynamic Performance of Low-Thrust, Cold-Gas Reaction Jets in a Vacuum. Journal of Spacecraft and Rockets, vol. 4, no. 8, pp. 983–990.
  • Hinkley, D., 2008, A Novel Cold Gas Propulsion System for Nanosatellites and Picosatellites. 22nd AIAA/USU Conference on Small Satellites, Logan, UT.
  • Jerman, T., & Langus, J., 2011, Calculating Cold Gas Microthruster Velocity Flow Using Finite Volume Analysis. University of Ljubljana, Ljubljana.
  • Kentish, S.E., Scholes, C.A., & Stevens, G.W., 2008, Carbon Dioxide Separation Through Polymeric Membrane Systems for Flue Gas Applications. Recent Patents on Chemical Engineering, vol. 1, no. 1, pp. 52–66.
  • Lemmer, K., 2017, Propulsion for Cubesats. Acta Astronautica, vol. 134, pp. 231– 245.
  • Manzoni, G., & Brama, Y. L., 2015, Cubesat Micropropulsion Characterization in Low Earth Orbit. 29th Annual AIAA/USU Conference on Small Satellites.
  • Matticari, G., Noci, G., Siciliano, P., Miccolis, M. & Strada, S., 2010, Cold Gas Thruster Assembly for SGEO Platform: Review of Development Activities by Thales Alenia Space Italia. Space Propulsion Conference, San Sebastian, Spain.
  • Lev,R., Herscovitz, J., & Zuckerman, Z., 2014, Cold Gas Propulsion System Conceptual Design for the SAMSON Nano-satellite. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p. 3759.
  • Pini, M., Vitale, S., Colonna, P., Gori, G., Guardone, A., Economon, T., Alonso, J., & Palacios, F., 2017, SU2: The Open-Source Software for Non-Ideal Compressible Flows. Journal of Physics: Conference Series, vol. 821, p. 012013, IOP Publishing.
  • Ranjan, R., Chou, S., Riaz, F., & Karthikeyan, K., 2017, Cold Gas Micro Propulsion Development for Satellite Application. Energy Procedia, vol. 143, pp. 754–761.
  • Rickmers, P., 2004, Performance Enhancement Through Flow Control in Cold Gas Thruster Nozzles. 55th International Astronautical Congress.
  • Risi, B. W., 2014, Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission. University of Toronto.
  • Sarda, K., Grant, C., Eagleson, S. Kekez, D., & Zee,R., 2008, Canadian Advanced Nanospace Experiment 2: n-orbit Experiences with a Three-kilogram Satellite. 22nd AIAA/USU Conference on Small Satellite, Logan, UT.

SU2 REAL GAS MODELS’ PERFORMANCE PREDICTIONS ON A COLD GAS THRUSTER

Year 2021, , 77 - 88, 30.04.2021
https://doi.org/10.47480/isibted.979351

Abstract

Cold gas propulsion systems are preferred, especially for the altitude and trajectory control for satellites, since the 1960s. Both depressurizing the propellant in the propellant tank throughout the mission and the expansion occurring in the divergent part of the thruster nozzle are the reasons for observing very low temperatures and pressure at the outlet section. We have decided to use an open-source compressible CFD tool, SU2, in order to predict the performance of the propulsion system in the early design phase. The scope of this study is the comparison of the results of the vacuum chamber performance tests and the outcomes of unsteady simulations with SU2 using different gas models, including ideal gas, van-der Waals, and Peng-Robinson models. Then, the accuracy and performance of these models are evaluated for the extremely low temperature and pressure conditions. Thruster performance tests have been conducted in the thermal vacuum chamber test campaign at the specially built testing facilities. In order to simulate nominal and low-temperature operation conditions, a propellant tank is thermally conditioned to the predetermined values, and performance test parameters are used as the input for the CFD simulations. The obtained results showed that the van der Waals gas model is the most appropriate gas model for both cases and provides the most realistic results in terms of performance parameters.

References

  • Aksel, M. H., 2011, Fluid Mechanics. Middle East Technical University.
  • Anis, A., 2012, Cold Gas Propulsion System - An Ideal Choice for Remote Sensing Small Satellites. Remote Sensing - Advanced Techniques and Platforms, IntechOpen.
  • Anis, A., 2008, Design & Development of Cold Gas Propulsion System for Pakistan Remote Sensing Satellite (PRSS). 2nd International Conference on Advances in Space Technologies, pp. 49–53, IEEE.
  • Bzibziak, R., 2000, Update of Cold Gas Propulsion at MOOG. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit.
  • Dorado, V., Grunder, Z., Schaefer, B., Sung, M., & Pedersen, K., 2013, NASA Marshall Space Flight Center Tri-gas Thruster Performance Characterization. AIAA/ASME/SAE/ASEE Joint Propulsion Conference
  • Greer, H., & Griep, D.J., 1967, Dynamic Performance of Low-Thrust, Cold-Gas Reaction Jets in a Vacuum. Journal of Spacecraft and Rockets, vol. 4, no. 8, pp. 983–990.
  • Hinkley, D., 2008, A Novel Cold Gas Propulsion System for Nanosatellites and Picosatellites. 22nd AIAA/USU Conference on Small Satellites, Logan, UT.
  • Jerman, T., & Langus, J., 2011, Calculating Cold Gas Microthruster Velocity Flow Using Finite Volume Analysis. University of Ljubljana, Ljubljana.
  • Kentish, S.E., Scholes, C.A., & Stevens, G.W., 2008, Carbon Dioxide Separation Through Polymeric Membrane Systems for Flue Gas Applications. Recent Patents on Chemical Engineering, vol. 1, no. 1, pp. 52–66.
  • Lemmer, K., 2017, Propulsion for Cubesats. Acta Astronautica, vol. 134, pp. 231– 245.
  • Manzoni, G., & Brama, Y. L., 2015, Cubesat Micropropulsion Characterization in Low Earth Orbit. 29th Annual AIAA/USU Conference on Small Satellites.
  • Matticari, G., Noci, G., Siciliano, P., Miccolis, M. & Strada, S., 2010, Cold Gas Thruster Assembly for SGEO Platform: Review of Development Activities by Thales Alenia Space Italia. Space Propulsion Conference, San Sebastian, Spain.
  • Lev,R., Herscovitz, J., & Zuckerman, Z., 2014, Cold Gas Propulsion System Conceptual Design for the SAMSON Nano-satellite. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p. 3759.
  • Pini, M., Vitale, S., Colonna, P., Gori, G., Guardone, A., Economon, T., Alonso, J., & Palacios, F., 2017, SU2: The Open-Source Software for Non-Ideal Compressible Flows. Journal of Physics: Conference Series, vol. 821, p. 012013, IOP Publishing.
  • Ranjan, R., Chou, S., Riaz, F., & Karthikeyan, K., 2017, Cold Gas Micro Propulsion Development for Satellite Application. Energy Procedia, vol. 143, pp. 754–761.
  • Rickmers, P., 2004, Performance Enhancement Through Flow Control in Cold Gas Thruster Nozzles. 55th International Astronautical Congress.
  • Risi, B. W., 2014, Propulsion System Development for the CanX-4 and CanX-5 Dual Nanosatellite Formation Flying Mission. University of Toronto.
  • Sarda, K., Grant, C., Eagleson, S. Kekez, D., & Zee,R., 2008, Canadian Advanced Nanospace Experiment 2: n-orbit Experiences with a Three-kilogram Satellite. 22nd AIAA/USU Conference on Small Satellite, Logan, UT.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Aysu Özden This is me 0000-0001-9257-1377

Özgür Baran This is me 0000-0002-8437-7862

Mehmet Aksel This is me 0000-0003-0563-4216

Mehmet Ak This is me 0000-0001-8204-8961

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Özden, A., Baran, Ö., Aksel, M., Ak, M. (2021). SU2 REAL GAS MODELS’ PERFORMANCE PREDICTIONS ON A COLD GAS THRUSTER. Isı Bilimi Ve Tekniği Dergisi, 41(1), 77-88. https://doi.org/10.47480/isibted.979351