Research Article
BibTex RIS Cite

KANATÇIKLI DİKDÖRTGEN KESİTLİ MİKROKANALDA NANOAKIŞKAN AKIŞININ SAYISAL İNCELENMESİ

Year 2021, , 89 - 99, 30.04.2021
https://doi.org/10.47480/isibted.979355

Abstract

Kanatçıklı bir mikrokanalın ısı transferi ve basınç düşüşü özellikleri üzerindeki geometrik parametrelerin ve nanoakışkan konsantrasyonunun etkilerini bulmak için sayısal bir çalışma gerçekleştirilmiştir. Dikdörtgen kesite sahip tek bir mikrokanala farklı yerleşimlere sahip altı adet ikili dikdörtgen kanat yerleştirildi. Mikrokanalın hidrolik çapı sabit tutularak yatay eksenler arasındaki kanat uzunluğu, genişliği ve açısı parametre olarak belirlendi. Baz akışkan olarak su seçilmiş ve hacimsel nanoakışkan konsantrasyonunun (Al2O3 (% 0 -% 0.4)) akış ve ısı transferi üzerindeki etkisi araştırılmıştır. Nanoakışkanların hacimsel konsantrasyonu ve kanatçık geometrisi, farklı parametrelerin seviyeleri için Yanıt Yüzey Optimizasyon (Response Surface Optimization) yöntemi ile optimize edilmiş ve farklı akış hızlarında Hesaplamalı Akışkanlar Dinamiği (CFD) analizleri (ANSYS Fluent 18) gerçekleştirilmiştir. Optimum kanatlı mikrokanal için hesaplanan CFD sonuçları, düz (kanatsız) mikrokanalınkilerle karşılaştırıldı. Çalışma sonucunda nanoakışkan konsantrasyon artışı ve kanatçıklar ısı transferini iyileştirmiş ve basınç düşüşünü artırmıştır.

References

  • DeWitt, D. P., and Incropera, F. P., 2002, Fundamentals of Heat and Mass Transfer, 5th Edition, John Wiley & Sons, Inc., New York.
  • Huang, Y.P., Huang, J., Ma, J., Wang, Y.L., and Wang, Q.W., 2010, Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel, Nuclear Engineering and Design, 240.
  • Chao Liu, J.T., Chu, Y.L., Chiu, S., Dang, R., Greif, R., Huang, S., Jin, T., Pan, H.H., and Teng, J.C., 2011, Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, International Journal of Heat and Mass Transfer, 54.
  • Chen, C., Cheng, C.H., Greif, R., Huang, S., Jin, S., Lee, M.T., Liu, C., Pan, H.H., and Teng, J.T., 2014, A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators, International Journal of Heat and Mass Transfer, 69.
  • Ugurlubilek, N., 2014, Numerical investigation of convective heat transfer and fluid flow in a channel with two semi -circular shaped obstacles, Süleyman Demirel University, Journal of Engineering Sciences and Design 2, 85-89.
  • Ebrahimi, A., Kheradmand, S. E., and Roohi, 2015, Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, Applied Thermal Engineering, 78.
  • Lelea, D., 2011, The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink, International Journal of Heat and Mass Transfer, 54, 3891-3899.
  • Chang, C.Y., Hung, T.C., Yan, W.M., and Wang, X.D., 2012, Heat transfer enhancement in microchannel heat sinks using nanofluids, International Journal of Heat and Mass Transfer, 55, 2559-2570.
  • Lei, J., Liu, Bo., Zhao, J., and Wu, J., 2016, Effectiveness of nanofluid on improving the performance of microchannel heat sink, Applied Thermal Engineering, 101, 402-412.
  • Ebrahimi, A., Rikhtegar, F., Roohi, E., and Sabaghan, A., 2016, Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids, Energy, 101, 190-201.
  • Karimzadehkhouei, M., Kosar, A., Menguc, M. P., Sendur, K., and Shojaeian, M., 2017, The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling, International Journal of Heat and Mass Transfer, 109, 157–166.
  • Ding, G., Hu, H., Jiang, W., and Peng, H., 2011, Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles, International Journal of Heat and Mass Transfer, 54, 9–10, 1839-1850.
  • Karimipour, A., Toghraie, D., and Zarringhalam, M., 2016, Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO/Water nanofluid, Experimental Thermal and Fluid Science, 76, 342–351.
  • Khaleduzzaman, S.S., Mahbubul, I.M., Niza, M.E., Saidur, R., Selvaraj, J., Sohel, M.R., and Ward, T.A., 2017, Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink, International Journal of Heat and Mass Transfer, 115, 77–85.
  • Hepbasli, A., Khaleduzzaman, S.S., Mahbubul, I.M., Sabri, M. F. M., Saidur, R., and Sohel, M.R., 2014, An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3/H2O nanofluid, International Journal of Heat and Mass Transfer, 74, 164–172.
  • Alagumurthi, N., Senthilvelan, T., and Sivakumar, A., 2016, Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink, Heat Mass Transfer, 52, 1265–1274.
  • Amanid, M., Ho, C.J., Liaoa, J.C., Lib, C.H., and Yan, W.M., 2019, Experimental study of cooling characteristics of water-based alumina nanofluid in a minichannel heat sink, Case Studies in Thermal Engineering, 14, 100418.
  • Liang, G., and Mudawar, I., 2019, Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels, International Journal of Heat and Mass Transfer, 136, 324–354.
  • Arshi Banu, P.S., Krishnan, A., Sagaya Raj, A.G., and Shafee, S.M., 2020, Numerical investigation of micro-pin-fin heat exchanger using nanofluids, Materials Today: Proceedings, 22, 1020–1025.
  • Bahiraei, M., Hosseini, Y., Mazaheri, N., and Moayedi, H., 2019, A two-phase simulation for analyzing thermohydraulic performance of Cu/water nanofluid within a square channel enhanced with 90_ V-shaped ribs, International Journal of Heat and Mass Transfer, 145, 118612.
  • Kim, M.H., and Saeed, M., 2018, Heat transfer enhancement using nanofluids (Al2O3/H2O) in mini-channel heatsinks, International Journal of Heat and Mass Transfer, 120, 671–682.
  • Ghasemi, S. E., Hosseini, M.J., and Ranjbar, A.A., 2017, Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study, Journal of Molecular Liquids, 248, 264–270.
  • Turkyilmazoglu, M., 2019, Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models, Computer Methods and Programs in Biomedicine, 179, 104997.
  • Cho, Y. I., and Pak, B.C., 1998, Hydrodynamic and heat transfer study of dispersed fluids wıth submicron metalic oxide particles, Experımental Heat Transfer An International Journal, 11:2, 151-170.
  • Roetzel, W., and Xuan, Y., 2000, Conceptions for heat transfer correlation of nanofuids, International Journal of Heat and Mass Transfer, 43, 3701±3707.
  • Choi, S.U.S., and Yu, W., 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, Journal of Nanoparticle Research, 5, 167–171.
  • Brinkman, H.C., 1952, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, Volume 20, Number 4, Pg.571.
  • Arslan, K., Ekiciler, R., and Kaya, H., 2019, CFD analysıs of lamınar forced convectıve heat transfer for TiO2/Water nanofluıd ın semı cırcular cross sectıoned mıcrochannel, Journal of Thermal Engineering, 5, 123-137.
  • Ambreen, T., and Kim, M.H., 2018, Heat transfer and pressure drop correlations of nanofluids: A state of art review, Renewable and Sustainable Energy Reviews, 91, 564–583.
  • Galanis, N., Maiga, S. E. B., Nguyen, C. T., Palm, S.J., and Roy, G., 2005, Heat transfer enhancement by using nanofluids in forced convection flows, International Journal of Heat and Fluid Flow, 26, 530–546.

A NUMERICAL INVESTIGATION OF NANOFLUID FLOW IN RECTANGULAR FINNED MICROCHANNEL

Year 2021, , 89 - 99, 30.04.2021
https://doi.org/10.47480/isibted.979355

Abstract

A numerical study and parameter optimization was carried out to find the effects of geometric parameters and nanofluid concentration on heat transfer and pressure drop characteristics of a finned microchannel. Six dual rectangular fins with different layouts were placed in a single microchannel having rectangular cross section. The hydraulic diameter of the microchannel was kept constant and the length, width and angle of fin between the horizontal axes were determined as parameters. The water was selected as base fluid and the effect of volumetric concentration of nanofluids (Al2O3 (0% to 0.4%)) on fluid flow and heat transfer were investigated. Volumetric concentration of nanofluids and fin geometry was optimized with Response Surface Optimization method for the levels of different parameters and Computational Fluid Dynamics (CFD) analyses (ANSYS Fluent 18) was performed at different flow rates. CFD results calculated for the optimum finned microchannel were compared to those of the straight (finless) microchannel. As a result of the study, nanofluid concentration increment and fins improved the heat transfer and increased the pressure drop.

References

  • DeWitt, D. P., and Incropera, F. P., 2002, Fundamentals of Heat and Mass Transfer, 5th Edition, John Wiley & Sons, Inc., New York.
  • Huang, Y.P., Huang, J., Ma, J., Wang, Y.L., and Wang, Q.W., 2010, Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel, Nuclear Engineering and Design, 240.
  • Chao Liu, J.T., Chu, Y.L., Chiu, S., Dang, R., Greif, R., Huang, S., Jin, T., Pan, H.H., and Teng, J.C., 2011, Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, International Journal of Heat and Mass Transfer, 54.
  • Chen, C., Cheng, C.H., Greif, R., Huang, S., Jin, S., Lee, M.T., Liu, C., Pan, H.H., and Teng, J.T., 2014, A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators, International Journal of Heat and Mass Transfer, 69.
  • Ugurlubilek, N., 2014, Numerical investigation of convective heat transfer and fluid flow in a channel with two semi -circular shaped obstacles, Süleyman Demirel University, Journal of Engineering Sciences and Design 2, 85-89.
  • Ebrahimi, A., Kheradmand, S. E., and Roohi, 2015, Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, Applied Thermal Engineering, 78.
  • Lelea, D., 2011, The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink, International Journal of Heat and Mass Transfer, 54, 3891-3899.
  • Chang, C.Y., Hung, T.C., Yan, W.M., and Wang, X.D., 2012, Heat transfer enhancement in microchannel heat sinks using nanofluids, International Journal of Heat and Mass Transfer, 55, 2559-2570.
  • Lei, J., Liu, Bo., Zhao, J., and Wu, J., 2016, Effectiveness of nanofluid on improving the performance of microchannel heat sink, Applied Thermal Engineering, 101, 402-412.
  • Ebrahimi, A., Rikhtegar, F., Roohi, E., and Sabaghan, A., 2016, Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids, Energy, 101, 190-201.
  • Karimzadehkhouei, M., Kosar, A., Menguc, M. P., Sendur, K., and Shojaeian, M., 2017, The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling, International Journal of Heat and Mass Transfer, 109, 157–166.
  • Ding, G., Hu, H., Jiang, W., and Peng, H., 2011, Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles, International Journal of Heat and Mass Transfer, 54, 9–10, 1839-1850.
  • Karimipour, A., Toghraie, D., and Zarringhalam, M., 2016, Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO/Water nanofluid, Experimental Thermal and Fluid Science, 76, 342–351.
  • Khaleduzzaman, S.S., Mahbubul, I.M., Niza, M.E., Saidur, R., Selvaraj, J., Sohel, M.R., and Ward, T.A., 2017, Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink, International Journal of Heat and Mass Transfer, 115, 77–85.
  • Hepbasli, A., Khaleduzzaman, S.S., Mahbubul, I.M., Sabri, M. F. M., Saidur, R., and Sohel, M.R., 2014, An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3/H2O nanofluid, International Journal of Heat and Mass Transfer, 74, 164–172.
  • Alagumurthi, N., Senthilvelan, T., and Sivakumar, A., 2016, Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink, Heat Mass Transfer, 52, 1265–1274.
  • Amanid, M., Ho, C.J., Liaoa, J.C., Lib, C.H., and Yan, W.M., 2019, Experimental study of cooling characteristics of water-based alumina nanofluid in a minichannel heat sink, Case Studies in Thermal Engineering, 14, 100418.
  • Liang, G., and Mudawar, I., 2019, Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels, International Journal of Heat and Mass Transfer, 136, 324–354.
  • Arshi Banu, P.S., Krishnan, A., Sagaya Raj, A.G., and Shafee, S.M., 2020, Numerical investigation of micro-pin-fin heat exchanger using nanofluids, Materials Today: Proceedings, 22, 1020–1025.
  • Bahiraei, M., Hosseini, Y., Mazaheri, N., and Moayedi, H., 2019, A two-phase simulation for analyzing thermohydraulic performance of Cu/water nanofluid within a square channel enhanced with 90_ V-shaped ribs, International Journal of Heat and Mass Transfer, 145, 118612.
  • Kim, M.H., and Saeed, M., 2018, Heat transfer enhancement using nanofluids (Al2O3/H2O) in mini-channel heatsinks, International Journal of Heat and Mass Transfer, 120, 671–682.
  • Ghasemi, S. E., Hosseini, M.J., and Ranjbar, A.A., 2017, Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study, Journal of Molecular Liquids, 248, 264–270.
  • Turkyilmazoglu, M., 2019, Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models, Computer Methods and Programs in Biomedicine, 179, 104997.
  • Cho, Y. I., and Pak, B.C., 1998, Hydrodynamic and heat transfer study of dispersed fluids wıth submicron metalic oxide particles, Experımental Heat Transfer An International Journal, 11:2, 151-170.
  • Roetzel, W., and Xuan, Y., 2000, Conceptions for heat transfer correlation of nanofuids, International Journal of Heat and Mass Transfer, 43, 3701±3707.
  • Choi, S.U.S., and Yu, W., 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, Journal of Nanoparticle Research, 5, 167–171.
  • Brinkman, H.C., 1952, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, Volume 20, Number 4, Pg.571.
  • Arslan, K., Ekiciler, R., and Kaya, H., 2019, CFD analysıs of lamınar forced convectıve heat transfer for TiO2/Water nanofluıd ın semı cırcular cross sectıoned mıcrochannel, Journal of Thermal Engineering, 5, 123-137.
  • Ambreen, T., and Kim, M.H., 2018, Heat transfer and pressure drop correlations of nanofluids: A state of art review, Renewable and Sustainable Energy Reviews, 91, 564–583.
  • Galanis, N., Maiga, S. E. B., Nguyen, C. T., Palm, S.J., and Roy, G., 2005, Heat transfer enhancement by using nanofluids in forced convection flows, International Journal of Heat and Fluid Flow, 26, 530–546.
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Halime Çelik This is me 0000-0002-0279-046X

Nezaket Parlak This is me 0000-0002-8469-2192

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Çelik, H., & Parlak, N. (2021). A NUMERICAL INVESTIGATION OF NANOFLUID FLOW IN RECTANGULAR FINNED MICROCHANNEL. Isı Bilimi Ve Tekniği Dergisi, 41(1), 89-99. https://doi.org/10.47480/isibted.979355