Research Article
BibTex RIS Cite

ÇİFT KABUK CEPHE SİSTEMİNİN BİNA ISIL PERFORMANSINA ETKİSİNİN DENEYSEL VE SAYISAL OLARAK İNCELENMESİ

Year 2021, , 119 - 132, 30.04.2021
https://doi.org/10.47480/isibted.979368

Abstract

Bu çalışmada, çift kabuk ve geleneksel tek kabuk cephe sistemlerindeki ısı transferi zamana bağlı tek boyutlu yaklaşımla ele alınarak, deneysel ve sayısal olarak incelenmiş ve cephelerin bina enerji performansına özellikle de ısıtma enerjisine etkisi araştırılmıştır. Bu kapsamda tek kabuk ve kutu tipi tampon bölge kullanımındaki çift kabuk cephelerdeki ısı transferinin hesaplanması için bölgesel analiz yöntemi aracılığı ile kullanıcı davranışı ve alüminyum doğrama elemanı etkisi dikkate alınarak matematiksel model kurulmuş ve kurulan model deneysel olarak doğrulanmıştır. Deneysel çalışma Ege Üniversitesi İnşaat Mühendisliği Bölümü binasının güney cephesinde yer alan, tek kabuk ve çift kabuk cephe kuruluşlarına sahip ofis mekanlarında 2017 Ocak ayı içerisinde ölçümler alınarak gerçekleştirilmiştir. Ardından, doğrulanan model, İzmir İli için, yıl içerisinde meydana gelen ısı transferini aylık ortalama günlük zaman dilimlerinde incelemek üzere kullanılmıştır. Akdeniz ikliminin hüküm sürdüğü İzmir İlinin 10 yıllık ortalama iklim verileri kullanılarak, tek kabuk ve çift kabuk cephe sistemlerinde ısıl performansın değişimi yıl içerisinde iklime bağlı olarak araştırılmıştır. Çift kabuk cephelerin ısı yalıtımı işlevini görerek iç ortamda meydana gelebilecek çok yüksek ve çok düşük sıcaklık değerlerini dengelediği

References

  • ASHRAE Fundamentals, Non residentaial cooling and heating load calculations, 2009.
  • Boake T.M., Harrison K., Collins D., Chatham A., Lee R., 2003, Understanding the Principles of the Double Façade System, School of Architecture, University of Waterloo.
  • Çengel Y., 2015, Heat and Mass Transfer, Fundamentals & Applications, Fifth Edition, McGraw-Hill Education, New York.
  • Duffie J.A., Beckman W.A., 2013, Solar Engineering of Thermal Processes, Fourth Edition, Wiley, NY.
  • Eicker U., 2003, Solar Technologies for Buildings, John Wiley and Sons, West Sussex.
  • Eicker U., Fux V., Bauer U., Mei D., Infield D., 2008, Façade and summer performance of buildings. Energy and Building, 40, 600-611.
  • Ghaffarianhoseini A., Ghaffarianhoseini A., Berardi U., Tookey J., Li D.H.W., Kariminia S., 2016, Explorig the advantages and challenges of double-skin façades (DSFs), Renewable and Sustainable Energy Reviews, 60, 1052-1065.
  • He G., Shu L., Zhang S., 2011, Double skin facades in the hot summer and cold winter zone in China: Cavity open or closed?, Building Thermal Lighting and Acoustic Modeling, 4, 283-291.
  • Hülagü S., Özbalta T.G., Başaran T., 2018, Çift Kabuk Kutu Tipi Cephe Kuruluşunun Bina Isıl Performansına Katkısı, IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, Trakya Üniversitesi, Edirne.
  • Hülagü S., 2017, Çift kabuk cephe sisteminin bina ısıl performansına etkisinin deneysel ve sayısal olarak incelenmesi, Yüksek Lisans Tezi, Ege Üniversitesi İnşaat Mühendisliği.
  • İnan T., Başaran T., Ezan M.A., 2016, Experimental and numerical investigation of natural convection in a double skin facade, Applied Thermal Engineering, 106, 1225-1235.
  • İnan T., Başaran T., 2019, Experimental and numerical investigation of forced convection in a double skin façade by using nodal network approach for Istanbul, Solar Energy, 183, 441-452.
  • İnternet, 2017, Meteoroloji Genel Müdürlüğü, Türkiye, İzmir İlinin İklim Durumu http://www.izmir.mgm.gov.tr/files/iklim/izmir_iklim.pdf
  • Jiru T.E., Haghighat F. 2008, Modeling ventilated double skin façade—A zonal approach, Energy and Buildings, 40, 1567-1576.
  • Klein, S.A., 1977, Calculation of monthly average insolation on tilted surfaces, Solar Energy, 19, 325-329.
  • Kuznik F., Catalina T., Gauzere L., Woloszyn M., Roux J.J., 2011, Numerical modelling of combined heat transfers in a double skin façade- Full scale laboratory experiment, Applied Thermal Engineering, 31, 3043-3054.
  • Liu Y., Harris, D.J., 2007, Full-scale measurement of convective coefficient on external surface of a low-rise building in sheltered conditions, Building and Environment, 42, 2718-2736.
  • Lou W., Huang M., Zhang M., Lin N., 2012, Experimental and zonal moeling for wind pressures on double-skin facades of a tall building, Energy and Buildings, 54, 179-191.
  • Macgregor R.K., Emery A.P., 1969, Free Convetion Through Vertical Plane Layers: Moderate and High Prandtl Number Fluids, Journal of Heat Transfer, 91, 391-401.
  • Nastase G., Şerban A., Dragomir G., Bolocan S., Brezeanu A. I., 2016, Box window double skin façade. Steady heat transfer model proposal for energetic audits, Energy and Buildings, 112, 12-20.
  • Pomponi F., Piroozfar P.A.E., Southall R., Ashton P., Farr E.R.P, 2016, Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis, Renewable and Sustainable Energy Reviews, 54, 1525-1536.
  • PVPS, IEA, 2002, Evaluation of Islanding Detection Methods for Photovoltaic Utility Interactive Power Systems, Report IEA PVPS T5-09.
  • Saelens D., 2002, Energy performance assessment of single storey mutiple-skin facades, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium.
  • Safer N., Woloszyn M., Roux J.J., Rusaouen G., Kuznik F., 2005, Modeling Of The Double-Skin Facades For Building Energy Simulations: Radiative And Convective Heat Transfer, Building Simulation, Ninth International IBPSA Conference, Montreal, Canada.
  • Sanchez E., Rolando A., Sant R., Ayuso, L., 2016, Influence of natural ventilation due to buoyancy and heat transfer in the energy efficiency of a double skin facade building, Energy for Sustainable Development, 33, 139-148.
  • Saury D., Rouger N., Djanna F., Penot F., 2011, Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers, International Communications in Heat and Mass Transfer, 38, 679–687.
  • Shameri M., Alghoul A., Sopian K., Fauzi M., Zain M., Elayeb O., 2011, Perspectives of double skin façade systems in buildings and energy saving, Renewable and Sustainable Energy Reviews, 15, 1468-1475.
  • Stec W. J., van Passen A. H. C., Maziarz A., 2005, Modelling the double skin façade with plants, Energy and Buildings, 37, 419-427.
  • TSE Türk Standardı, 2009, Binalarda Isı Yalıtım Kuralları, TS 825.
  • Yılmaz Z., Çetintaş F., 2005, Double skin facade’s effects on heat losses of office buildings in Istanbul, Energy and Buildings, 37, 691-697.

EXPERIMENTAL AND ANALYTICAL EXAMINATION OF THE EFFECT OF DOUBLE SKIN FAÇADE SYSTEM ON BUILDING THERMAL PERFORMANCE

Year 2021, , 119 - 132, 30.04.2021
https://doi.org/10.47480/isibted.979368

Abstract

In this study, heat transfer in conventional single skin façade and double skin façade system was studied experimentally and numerically by using one dimensional time dependent approach and the effects of the façade systems on building energy performance especially heating energy was investigated. In this context, a mathematical model considering user behavior and window aluminum frame element effect was build by zonal analysis method to calculate the heat transfer in single and box type closed cavity double skin façade systems, and build model was experimentally verified. Experimental study was conducted in office spaces having single and double skin façade systems in Ege University, Civil Engineering Building’s south façade in January 2017. Next, verified model was used to study the heat transfer in the façade systems for İzmir’s climatic condition by using monthly average daily data. The change in thermal performance of single and double skin façade systems due to the climatic condition during a year was investigated by using the 10 year average climate data of İzmir (Mediterranean climate). It was found that double skin façade system acts as an insulator preventing extreme indoor temperature values, thus contributing to the indoor comfort level against changing outdoor conditions.

References

  • ASHRAE Fundamentals, Non residentaial cooling and heating load calculations, 2009.
  • Boake T.M., Harrison K., Collins D., Chatham A., Lee R., 2003, Understanding the Principles of the Double Façade System, School of Architecture, University of Waterloo.
  • Çengel Y., 2015, Heat and Mass Transfer, Fundamentals & Applications, Fifth Edition, McGraw-Hill Education, New York.
  • Duffie J.A., Beckman W.A., 2013, Solar Engineering of Thermal Processes, Fourth Edition, Wiley, NY.
  • Eicker U., 2003, Solar Technologies for Buildings, John Wiley and Sons, West Sussex.
  • Eicker U., Fux V., Bauer U., Mei D., Infield D., 2008, Façade and summer performance of buildings. Energy and Building, 40, 600-611.
  • Ghaffarianhoseini A., Ghaffarianhoseini A., Berardi U., Tookey J., Li D.H.W., Kariminia S., 2016, Explorig the advantages and challenges of double-skin façades (DSFs), Renewable and Sustainable Energy Reviews, 60, 1052-1065.
  • He G., Shu L., Zhang S., 2011, Double skin facades in the hot summer and cold winter zone in China: Cavity open or closed?, Building Thermal Lighting and Acoustic Modeling, 4, 283-291.
  • Hülagü S., Özbalta T.G., Başaran T., 2018, Çift Kabuk Kutu Tipi Cephe Kuruluşunun Bina Isıl Performansına Katkısı, IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, Trakya Üniversitesi, Edirne.
  • Hülagü S., 2017, Çift kabuk cephe sisteminin bina ısıl performansına etkisinin deneysel ve sayısal olarak incelenmesi, Yüksek Lisans Tezi, Ege Üniversitesi İnşaat Mühendisliği.
  • İnan T., Başaran T., Ezan M.A., 2016, Experimental and numerical investigation of natural convection in a double skin facade, Applied Thermal Engineering, 106, 1225-1235.
  • İnan T., Başaran T., 2019, Experimental and numerical investigation of forced convection in a double skin façade by using nodal network approach for Istanbul, Solar Energy, 183, 441-452.
  • İnternet, 2017, Meteoroloji Genel Müdürlüğü, Türkiye, İzmir İlinin İklim Durumu http://www.izmir.mgm.gov.tr/files/iklim/izmir_iklim.pdf
  • Jiru T.E., Haghighat F. 2008, Modeling ventilated double skin façade—A zonal approach, Energy and Buildings, 40, 1567-1576.
  • Klein, S.A., 1977, Calculation of monthly average insolation on tilted surfaces, Solar Energy, 19, 325-329.
  • Kuznik F., Catalina T., Gauzere L., Woloszyn M., Roux J.J., 2011, Numerical modelling of combined heat transfers in a double skin façade- Full scale laboratory experiment, Applied Thermal Engineering, 31, 3043-3054.
  • Liu Y., Harris, D.J., 2007, Full-scale measurement of convective coefficient on external surface of a low-rise building in sheltered conditions, Building and Environment, 42, 2718-2736.
  • Lou W., Huang M., Zhang M., Lin N., 2012, Experimental and zonal moeling for wind pressures on double-skin facades of a tall building, Energy and Buildings, 54, 179-191.
  • Macgregor R.K., Emery A.P., 1969, Free Convetion Through Vertical Plane Layers: Moderate and High Prandtl Number Fluids, Journal of Heat Transfer, 91, 391-401.
  • Nastase G., Şerban A., Dragomir G., Bolocan S., Brezeanu A. I., 2016, Box window double skin façade. Steady heat transfer model proposal for energetic audits, Energy and Buildings, 112, 12-20.
  • Pomponi F., Piroozfar P.A.E., Southall R., Ashton P., Farr E.R.P, 2016, Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis, Renewable and Sustainable Energy Reviews, 54, 1525-1536.
  • PVPS, IEA, 2002, Evaluation of Islanding Detection Methods for Photovoltaic Utility Interactive Power Systems, Report IEA PVPS T5-09.
  • Saelens D., 2002, Energy performance assessment of single storey mutiple-skin facades, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium.
  • Safer N., Woloszyn M., Roux J.J., Rusaouen G., Kuznik F., 2005, Modeling Of The Double-Skin Facades For Building Energy Simulations: Radiative And Convective Heat Transfer, Building Simulation, Ninth International IBPSA Conference, Montreal, Canada.
  • Sanchez E., Rolando A., Sant R., Ayuso, L., 2016, Influence of natural ventilation due to buoyancy and heat transfer in the energy efficiency of a double skin facade building, Energy for Sustainable Development, 33, 139-148.
  • Saury D., Rouger N., Djanna F., Penot F., 2011, Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers, International Communications in Heat and Mass Transfer, 38, 679–687.
  • Shameri M., Alghoul A., Sopian K., Fauzi M., Zain M., Elayeb O., 2011, Perspectives of double skin façade systems in buildings and energy saving, Renewable and Sustainable Energy Reviews, 15, 1468-1475.
  • Stec W. J., van Passen A. H. C., Maziarz A., 2005, Modelling the double skin façade with plants, Energy and Buildings, 37, 419-427.
  • TSE Türk Standardı, 2009, Binalarda Isı Yalıtım Kuralları, TS 825.
  • Yılmaz Z., Çetintaş F., 2005, Double skin facade’s effects on heat losses of office buildings in Istanbul, Energy and Buildings, 37, 691-697.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Selin Hülagü This is me 0000-0002-2864-3062

Türkan Göksal This is me 0000-0001-5195-0741

Tahsin Başaran This is me 0000-0003-0988-9355

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Hülagü, S., Göksal, T., & Başaran, T. (2021). ÇİFT KABUK CEPHE SİSTEMİNİN BİNA ISIL PERFORMANSINA ETKİSİNİN DENEYSEL VE SAYISAL OLARAK İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 41(1), 119-132. https://doi.org/10.47480/isibted.979368