Research Article
BibTex RIS Cite

BUHAR SIKIŞTIRMALI SOĞUTMA TEST ÜNİTESİNE İLERİ EKSERJİ METODUNUN UYGULANMASI

Year 2021, , 157 - 166, 30.04.2021
https://doi.org/10.47480/isibted.979394

Abstract

Termodinamiğin Birinci Kanunu ile yapılan hesaplamalarda her bir ünitede oluşan sıcaklık farkından ve basınç kayıpları nedeniyle oluşan tersinmezliklerin sistem performansı üzerindeki etkileri belirlenememektedir. Bu nedenle Termodinamiğin ikinci kanunu ve ileri ekserji analizi metodu kullanılarak, seçilen termal sistemde her bir ünitede oluşan ekserji tahribatının büyüklükleri ve ekserji tahribatı tipleri hesaplanmalıdır. Bu çalışmada, buhar sıkıştırmalı soğutma sistemi ile çalışan bir test ünitesinin performansı ekserji ve ileri ekserji analiz metodu ile incelenmiştir. İleri ekserji analizi sonucunda buhar sıkıştırmalı soğutma test ünitesindeki her bir bileşenin günümüz de ulaşılabilen en son teknolojiyi içeren ürünlerin kullanıldığını göstermektedir. Yapılan çalışmada evaparatörün diğer bileşenler arasında en yüksek termal performans ile çalıştığı bulunmuştur.

References

  • Azizi T., Boyarhchihi F.A., 2014, Assessment of a Real Combined Cycle Power Plant with Supplementary Firing Based on Advanced Exergy/Exergoeconomic Methods. Iranian Journal of Mechanical Engineering, Vol. 15, No. 2.
  • Bai T., Yu J., Yan G., 2016, Advanced exergy analysis of an ejector expansion transcritical CO2 refrigeration system, Energy Conversion and Management, 126, 850-861.
  • Balli O., 2017, Advanced exergy analysis to evaluate the performance of a military aircraft turbojet engine (TJE) with afterborner system: Splitting exergy destruction into unavoidablr/avoidable and endogeneous/exogenous, Applied Thermal Engineering, 111, 152-169.
  • Chen J., 2014, Investigation of vapour ejectors in heat driven ejectors refrigeration system. Ph.D. Thesis, Division of applied thermodynamics and refrigeration department of energy tecnology, Royal Enstitute of technology, KTH , SE-100 44 Stckholm, Sweden.
  • Fabrian B., Toung-Wang N., Kjear J.J., and Brian E., 2016, Energy, exergy anad advanced exergy analysis of a milk processing factory, Proceedings of ECOS, The 29th International conferance on efficiency, cost, optimization, simulation and environmental impact of energy system, 1-13.
  • Ghorbani B., Roshani H., 2018, Advanced exergy and exergoeconomic analysis of the integrated structure of simultaneous production of NGL recovery and liquefaction. Trans Phenom Nano Micro Scales, 6(Specials):8-14. Doi: 0 22111/tpnms.
  • Gullo P., Hafner A., and Banasiak K., 2019, Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Analysis, Energies, 354; doi:10.3390/en12030354.
  • Gullo P., Elmegaard B., Cortell G., 2016, Advanced exergy analysis of a R744 booster refrigeration system with paralel compression, Energy, Doi:10.1016/j.energy.2016.04.043
  • Kelly S., Tsatsaronis G., Morosuk T., 2009, Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy, 34 (2009) 384–391.
  • Kotas T.J., 1985, The exergy method of thermal plant analysis. Anchor Brendon Ltd.
  • Liu H., He Q., Saeed S.B., 2016, Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis, Journal of Renewable and Sustainable Energy, 8, 1-17, 034101.
  • Özgür A.E., Kabul A., Kizikan Ö., 2014, Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a, International Journal of Low-Carbon Technologies, 9, 56–62.
  • Şöhret Y., Açıkkalp E., Hepbaşlı A., Karakoç TH., 2015, Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy, 90, 1219-1228.
  • Tsatsaronis G., Morosuk T., 2012, Advanced thermodynamic (exergetic) analysis, 6th European Thermal Science Conferance (Eurohern 2012) Journal of Physics Conferance Series 395, 012160. doi:10.1088/1742-6596/395/1/012160.
  • Vuckovic G.D., Vukic M.V., Stojiljkovic M.M., Vuckovic. D.D., 2012, Avoidable and Unavoidable Exergy Destruction and Exergoeconomic Evaluation of the Thermal Processes in a RealIindustrial Plant, Thermal science, Vol. 16, Suppl. 2, pp. S493-S506.
  • Wang L., Yang Z., Sharama S., Mian A., Lin T E., Tsatsaronis T., Marechal F. And Yang Y., 2019, A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants., Energies, 12, 73; doi:10.3390/en12010073.

APPLICATION OF ADVANCED EXERGY METHOD TO THE VAPOUR COMPRESSION COOLING TEST UNIT

Year 2021, , 157 - 166, 30.04.2021
https://doi.org/10.47480/isibted.979394

Abstract

In the calculations made using the first law analysis method of Thermodynamics, the effects of irreversibility caused by temperature difference, pressure losses and heat transfer in each unit can not be determined on thermal system performance. Therefore, by using the second law of thermodynamics and advanced exergy analysis method, the magnitude of the exergy destructions and the types of exergy destructions occuring in each unit in the selected thermal system can be used in the performance evaluation stage of the system. In this study, the performanse of the test unit which is operated by a vapor compression cooling system was investigated by means of the exergy and advanced exergy analysis methods. Advanced exergy analysis is showed that each component of vapour compression refrigeration test uses the latest technology available today. In the study, it was found that the evaporator operates with the highest thermal performanca among the other components.

References

  • Azizi T., Boyarhchihi F.A., 2014, Assessment of a Real Combined Cycle Power Plant with Supplementary Firing Based on Advanced Exergy/Exergoeconomic Methods. Iranian Journal of Mechanical Engineering, Vol. 15, No. 2.
  • Bai T., Yu J., Yan G., 2016, Advanced exergy analysis of an ejector expansion transcritical CO2 refrigeration system, Energy Conversion and Management, 126, 850-861.
  • Balli O., 2017, Advanced exergy analysis to evaluate the performance of a military aircraft turbojet engine (TJE) with afterborner system: Splitting exergy destruction into unavoidablr/avoidable and endogeneous/exogenous, Applied Thermal Engineering, 111, 152-169.
  • Chen J., 2014, Investigation of vapour ejectors in heat driven ejectors refrigeration system. Ph.D. Thesis, Division of applied thermodynamics and refrigeration department of energy tecnology, Royal Enstitute of technology, KTH , SE-100 44 Stckholm, Sweden.
  • Fabrian B., Toung-Wang N., Kjear J.J., and Brian E., 2016, Energy, exergy anad advanced exergy analysis of a milk processing factory, Proceedings of ECOS, The 29th International conferance on efficiency, cost, optimization, simulation and environmental impact of energy system, 1-13.
  • Ghorbani B., Roshani H., 2018, Advanced exergy and exergoeconomic analysis of the integrated structure of simultaneous production of NGL recovery and liquefaction. Trans Phenom Nano Micro Scales, 6(Specials):8-14. Doi: 0 22111/tpnms.
  • Gullo P., Hafner A., and Banasiak K., 2019, Thermodynamic Performance Investigation of Commercial R744 Booster Refrigeration Plants Based on Advanced Analysis, Energies, 354; doi:10.3390/en12030354.
  • Gullo P., Elmegaard B., Cortell G., 2016, Advanced exergy analysis of a R744 booster refrigeration system with paralel compression, Energy, Doi:10.1016/j.energy.2016.04.043
  • Kelly S., Tsatsaronis G., Morosuk T., 2009, Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy, 34 (2009) 384–391.
  • Kotas T.J., 1985, The exergy method of thermal plant analysis. Anchor Brendon Ltd.
  • Liu H., He Q., Saeed S.B., 2016, Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis, Journal of Renewable and Sustainable Energy, 8, 1-17, 034101.
  • Özgür A.E., Kabul A., Kizikan Ö., 2014, Exergy analysis of refrigeration systems using an alternative refrigerant (hfo-1234yf) to R-134a, International Journal of Low-Carbon Technologies, 9, 56–62.
  • Şöhret Y., Açıkkalp E., Hepbaşlı A., Karakoç TH., 2015, Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts. Energy, 90, 1219-1228.
  • Tsatsaronis G., Morosuk T., 2012, Advanced thermodynamic (exergetic) analysis, 6th European Thermal Science Conferance (Eurohern 2012) Journal of Physics Conferance Series 395, 012160. doi:10.1088/1742-6596/395/1/012160.
  • Vuckovic G.D., Vukic M.V., Stojiljkovic M.M., Vuckovic. D.D., 2012, Avoidable and Unavoidable Exergy Destruction and Exergoeconomic Evaluation of the Thermal Processes in a RealIindustrial Plant, Thermal science, Vol. 16, Suppl. 2, pp. S493-S506.
  • Wang L., Yang Z., Sharama S., Mian A., Lin T E., Tsatsaronis T., Marechal F. And Yang Y., 2019, A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants., Energies, 12, 73; doi:10.3390/en12010073.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Betül Saraç This is me 0000-0003-3876-7314

Publication Date April 30, 2021
Published in Issue Year 2021

Cite

APA Saraç, B. (2021). BUHAR SIKIŞTIRMALI SOĞUTMA TEST ÜNİTESİNE İLERİ EKSERJİ METODUNUN UYGULANMASI. Isı Bilimi Ve Tekniği Dergisi, 41(1), 157-166. https://doi.org/10.47480/isibted.979394