Research Article
BibTex RIS Cite

ENHANCING STORAGE PERFORMANCE IN A TUBE-IN SHELL STORAGE UNIT BY ATTACHING A CONDUCTING FIN TO THE BOTTOM OF THE TUBE

Year 2018, Volume: 38 Issue: 2, 1 - 13, 31.10.2018

Abstract

In this experimental study, melting behavior of paraffin in a storage unit of the horizontal shell-and-tube type is investigated. In order to enhance melting rate, a conducting fin is attached to the bottom of the inner tube. At first, the tube without a fin is tested. Then, the tubes with fin of four different heights (h=10, 20, 30 and 40 mm) are examined. Experiments are conducted at constant values of the inlet temperature and the inlet mass flow rate of the heat transfer fluid (HTF). As phase change material (PCM), paraffin (solidification range of 56−58 C) is used. For each case tested, transient variations of the temperature at some specific radial points inside the phase change material (PCM) are obtained. For the case without a fin, natural convection recirculation is shown to be weak in the lower half region of the annulus when compared to that in the upper half region. Results show that attaching a conducting fin to the bottom of the inner tube intensifies the recirculation of liquid PCM in the lower half and, in follows, enhances the melting rate about 72.8% for the fin height of 40 mm when compared to without fin (h=0 mm)

References

  • Abdulateef A. M., Mat S., Abdulateef J., Sopian K. and Al-Abidi A. A., 2018, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renewable and Sustainable Energy Reviews, 82, 1620-1635.
  • Abhat A., 1983, Low temperature latent heat thermal energy storage: heat storage materials, Sol Energy, 30, 313–332.
  • Agyenim F., Eames P. and Symth M., 2009, A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins, Sol. Energy, 83, 1509–1520.
  • Agyenim F., Hewitt N., Eames P. and Symth M., 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESs), Renew. Sust. Energy Rev., 14, 615–628.
  • Akgun M., Aydın O. and Kaygusuz K., 2007, Thermal energy storage behavior of a paraffin during melting and solidification, Energ. Source Part A, 29, 1315-26.
  • Al-Abidi A. A., Sohif M., Sopian K., Sulaiman M. Y. and Mohammad A. T., 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl. Therm. Eng., 53, 147-156.
  • Al-Abidi A. A., Sohif M., Sopian K., Sulaiman M. Y. and Mohammad A. T., 2014, Experimental study of melting and solidification triplex tube heat exchanger with fins, Energ. Buildings, 68, 33-41.
  • Avci M. and Yazici M. Y., 2013. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit, Energy Convers. Manage. 73, 271–277.
  • Cao X., Yuan Y., Xiang B., Sun L. and Xingxing Z., 2018, Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures, Energ. Buildings, 158, 384–392.
  • Choi J. C. and Kim S. D., 1995, Heat transfer characteristics of a latent heat storage system using MgCl2.6H2O, Energy, 20, 13-25.
  • Dincer I. and Rosen M. A., 2002, Thermal energy storage, systems and applications. New York: John Wiley & Sons.
  • Erek A., Ilken Z. and Acar M.A., 2005, Experimental and numerical investigation of thermal energy storage with a finned tube, Int. J. Energy Res., 29, 283–301. 12
  • Ettouney H. M, Alatigi I, Al-Sahali M. and Al-Ali S. A., 2004, Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems,. Renew Energy, 29, 841–860.
  • Felix Regin A, Solanki S.C. and Saini J. S., 2008, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review, Renew. Sust. Energy Rev., 12, 2438–2458.
  • Garg H.P, Mullick S.C. and Bhargava A.K., 1985, Solar thermal energy storage, Dordecht: D. Reidel Publishing Company.
  • Hamdani U. and Mahlia T. M. I., 2012, Investigation of melting heat transfer characteristics of latent heat thermal storage unit with finned tube, Procedia Engineering, 50, 122–128.
  • Han G.S., Ding H. S., Huang Y., Tong L. G. and Ding Y. L., 2017, comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection, Int. Commun. Heat Mass Trans., 88, 228–235.
  • Hasnain S. M., 1998, Review on sustainable thermal energy storage technologies. Part I: heat storage materials and techniques, Energy Convers Manage, 39, 1127–1138.
  • Hosseini M. J., Rahimi M., Bahrampoury R., 2014, Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system, Int. Commun. Heat Mass Trans., 50, 128–136.
  • Hosseini M. J, Ranjbar A. A, Sedighi K. and Rahimi M. A., 2012, combined experimental and computational study on the melting behavior of a medium temperature phase change storage inside shell and tube heat exchanger, Int. Commun. Heat Mass Trans., 39, 1416–1424.
  • Ismail K. A. R. and Lino F. A. M., 2011, Fins and turbulence promoters for heat transfer enhancement in latent storage systems, Exp. Therm. Fluid Sci., 35, 1010-1018.
  • Jesumathy S.P., Udayakumar M. and Suresh S., 2012, Heat transfer characteristics in latent heat storage system using paraffin wax, J. Mech. Sci. Tech., 26, 959-965.
  • Kenisarin M. and Mahkamov K., 2016, Passive thermal control in residential buildings using phase change materials, Renew. Sust. Energ. Rev., 55, 371-398.
  • Lacroix M., 1993, Study of the heat-transfer behavior of a latent-heat thermal energy storage unit with a finned tube, Int. J. Heat Mass Tran., 36, 2083-2092.
  • Lane G. A. Solar heat storage: latent heat materials, vol. I. Boca Raton: CRC Press; 1983.
  • Liu C. and Groulx D., 2014, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system, International Journal of Thermal Sciences, 82, 100-110.
  • Ogoh W. and Groulx D. 2012, Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system:a numerical study, Heat Mass Transfer, 48, 1825–1835.
  • Rathod M. K. and Banerjee J., 2015, Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins, Appl. Therm Eng, 75, 1084-1092.
  • Reddy K. S., Mudgala V. and Mallick T. K., 2018, Review of latent heat thermal energy storage for improved material stability and effective load management, Journal of Energy Storage, 15, 205-227.
  • Rösler F. and Brüggemann D., 2011, Shell-and-tube type latent heat thermal energy storage: Numerical analysis and comparison with experiments, Heat and Mass Transfer, 47, 1027-1033.
  • Sarı A. and Kaygusuz K., 2001a, Thermal energy storage system using stearic acid as a phase change material, Sol. Energy, 71, 365-376.
  • Sarı A. and Kaygusuz K., 2001b, Thermal performance of myristic acid as a phase change material for energy storage application. Renew Energy, 24, 303–317.
  • Sarı A. and Kaygusuz K., 2002, Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes, Solar Energy, 72, 493-504.
  • Seddegh S., Joybari, M. M., Wang X. and Haghighat F., 2017, Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system, Sustainable Cities and Society, 35, 13-24..
  • Seddegh S., Wang X. and Henderson A. D., 2015, Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system, Appl. Therm. Eng., 87, 698-706.
  • Seddegh S., Wang X. and Henderson A. D., 2016, Comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials, Appl. Therm. Eng., 93, 348-358.
  • Sharma S. D and Sagara K., 2005, Latent heat storage materials and systems: a review, Int. J. Green Energy, 2, 1–56.
  • Song M., Niu F., Mao, N., Hu, Y. and Deng, S., 2018, Review on building energy performance improvement 13 using phase change materials, Energy and Buildings, 158, 776-793.
  • Tao Y. B, and Carey V.P., 2016, Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit, Applied Energy, 179, 203-210.
  • Tao Y. B, and He Y. L., 2011, Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary, Applied Energy, 88, 4172-4179.
  • Trp A., 2005, An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol. Energy, 79, 648–60.
  • Wang W.W., Zhang K., Wang L. B. and He Y. L., 2013, Numerical study of the heat charging and discharging characteristics of a shell-and-tube phase change heat storage unit, Appl. Therm. Eng., 58, 542-553.
  • Wang Y., Wang L., Xie, N., Lin X., and Chena, H., 2016, Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit, Int. J. Heat Mass Tran., 99, 770-781.
  • Xu B., Li P. and Chan C., 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments, Applied Energy, 160, 286-307.
  • Zalba B, Marin J.M, Cabeza L.F. and Mehling H., 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl.Therm. Eng., 23, 251–283.
  • Zhang Y. and Faghri A., 1996, Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube, Journal of Enhanced Heat Transfer, 3, 119-127.

HALKASAL GEOMETRİYE SAHİP SİLİNDİRİK BİR DEPONUN ISI DEPOLAMA PERFORMANSININ İYİLEŞTİRİLMESİ: KANATÇIK İLAVESİ

Year 2018, Volume: 38 Issue: 2, 1 - 13, 31.10.2018

Abstract

Bu çalışmada, yatay olarak konumlandırılan silindirik halka aralık bir geometri içerisindeki faz değiştiren maddenin (FDM) erime (şarj) davranışı deneysel olarak incelenmiştir. Erime sürecinin iyileştirilmesi amacıyla ısı transfer borusuna kanatçık ilavesi yapılmıştır. Kanatçıksız durum (h=0 mm) ve dört farklı kanatçık yüksekliği (h=10, 20, 30 and 40 mm) için deneyler gerçekleştirilmiştir. Deneyler, sabit bir hacimsel debide ve tek bir akışkan giriş sıcaklığında yapılmıştır. FDM olarak katılaşma sıcaklığı 56−58 C olan parafin kullanılmıştır. Her bir durum (h) için FDM içerisinde tanımlanan radyal yerel noktalardan zaman bağımlı sıcaklık ölçümleri alınmıştır. Kanatçıksız duruma ait veriler incelendiğinde halka aralığın alt yarı bölgesindeki doğal taşınım mekanizmasının üst yarı bölgeye kıyasla daha zayıf olduğu görülmüştür. Sonuç olarak, ısı transfer borusunun (iç boru) alt kısmına yapılan kanatçık ilavesinin halka aralığın alt bölgesindeki sıvı FDM sirkülasyonunu kuvvetlendirdiği görülmüştür. Kanatçık yükseklikliğinin maksimum olduğu durum (h=40 mm) için erime hızında kanatçıksız duruma (h=0 mm) kıyasla %72.8 oranında iyileşme sağlandığı ortaya konmuştur.

termal enerji depolama, ,, ,.

References

  • Abdulateef A. M., Mat S., Abdulateef J., Sopian K. and Al-Abidi A. A., 2018, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renewable and Sustainable Energy Reviews, 82, 1620-1635.
  • Abhat A., 1983, Low temperature latent heat thermal energy storage: heat storage materials, Sol Energy, 30, 313–332.
  • Agyenim F., Eames P. and Symth M., 2009, A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins, Sol. Energy, 83, 1509–1520.
  • Agyenim F., Hewitt N., Eames P. and Symth M., 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESs), Renew. Sust. Energy Rev., 14, 615–628.
  • Akgun M., Aydın O. and Kaygusuz K., 2007, Thermal energy storage behavior of a paraffin during melting and solidification, Energ. Source Part A, 29, 1315-26.
  • Al-Abidi A. A., Sohif M., Sopian K., Sulaiman M. Y. and Mohammad A. T., 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl. Therm. Eng., 53, 147-156.
  • Al-Abidi A. A., Sohif M., Sopian K., Sulaiman M. Y. and Mohammad A. T., 2014, Experimental study of melting and solidification triplex tube heat exchanger with fins, Energ. Buildings, 68, 33-41.
  • Avci M. and Yazici M. Y., 2013. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit, Energy Convers. Manage. 73, 271–277.
  • Cao X., Yuan Y., Xiang B., Sun L. and Xingxing Z., 2018, Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures, Energ. Buildings, 158, 384–392.
  • Choi J. C. and Kim S. D., 1995, Heat transfer characteristics of a latent heat storage system using MgCl2.6H2O, Energy, 20, 13-25.
  • Dincer I. and Rosen M. A., 2002, Thermal energy storage, systems and applications. New York: John Wiley & Sons.
  • Erek A., Ilken Z. and Acar M.A., 2005, Experimental and numerical investigation of thermal energy storage with a finned tube, Int. J. Energy Res., 29, 283–301. 12
  • Ettouney H. M, Alatigi I, Al-Sahali M. and Al-Ali S. A., 2004, Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems,. Renew Energy, 29, 841–860.
  • Felix Regin A, Solanki S.C. and Saini J. S., 2008, Heat transfer characteristics of thermal energy storage system using PCM capsules: a review, Renew. Sust. Energy Rev., 12, 2438–2458.
  • Garg H.P, Mullick S.C. and Bhargava A.K., 1985, Solar thermal energy storage, Dordecht: D. Reidel Publishing Company.
  • Hamdani U. and Mahlia T. M. I., 2012, Investigation of melting heat transfer characteristics of latent heat thermal storage unit with finned tube, Procedia Engineering, 50, 122–128.
  • Han G.S., Ding H. S., Huang Y., Tong L. G. and Ding Y. L., 2017, comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection, Int. Commun. Heat Mass Trans., 88, 228–235.
  • Hasnain S. M., 1998, Review on sustainable thermal energy storage technologies. Part I: heat storage materials and techniques, Energy Convers Manage, 39, 1127–1138.
  • Hosseini M. J., Rahimi M., Bahrampoury R., 2014, Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system, Int. Commun. Heat Mass Trans., 50, 128–136.
  • Hosseini M. J, Ranjbar A. A, Sedighi K. and Rahimi M. A., 2012, combined experimental and computational study on the melting behavior of a medium temperature phase change storage inside shell and tube heat exchanger, Int. Commun. Heat Mass Trans., 39, 1416–1424.
  • Ismail K. A. R. and Lino F. A. M., 2011, Fins and turbulence promoters for heat transfer enhancement in latent storage systems, Exp. Therm. Fluid Sci., 35, 1010-1018.
  • Jesumathy S.P., Udayakumar M. and Suresh S., 2012, Heat transfer characteristics in latent heat storage system using paraffin wax, J. Mech. Sci. Tech., 26, 959-965.
  • Kenisarin M. and Mahkamov K., 2016, Passive thermal control in residential buildings using phase change materials, Renew. Sust. Energ. Rev., 55, 371-398.
  • Lacroix M., 1993, Study of the heat-transfer behavior of a latent-heat thermal energy storage unit with a finned tube, Int. J. Heat Mass Tran., 36, 2083-2092.
  • Lane G. A. Solar heat storage: latent heat materials, vol. I. Boca Raton: CRC Press; 1983.
  • Liu C. and Groulx D., 2014, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system, International Journal of Thermal Sciences, 82, 100-110.
  • Ogoh W. and Groulx D. 2012, Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system:a numerical study, Heat Mass Transfer, 48, 1825–1835.
  • Rathod M. K. and Banerjee J., 2015, Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins, Appl. Therm Eng, 75, 1084-1092.
  • Reddy K. S., Mudgala V. and Mallick T. K., 2018, Review of latent heat thermal energy storage for improved material stability and effective load management, Journal of Energy Storage, 15, 205-227.
  • Rösler F. and Brüggemann D., 2011, Shell-and-tube type latent heat thermal energy storage: Numerical analysis and comparison with experiments, Heat and Mass Transfer, 47, 1027-1033.
  • Sarı A. and Kaygusuz K., 2001a, Thermal energy storage system using stearic acid as a phase change material, Sol. Energy, 71, 365-376.
  • Sarı A. and Kaygusuz K., 2001b, Thermal performance of myristic acid as a phase change material for energy storage application. Renew Energy, 24, 303–317.
  • Sarı A. and Kaygusuz K., 2002, Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes, Solar Energy, 72, 493-504.
  • Seddegh S., Joybari, M. M., Wang X. and Haghighat F., 2017, Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system, Sustainable Cities and Society, 35, 13-24..
  • Seddegh S., Wang X. and Henderson A. D., 2015, Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system, Appl. Therm. Eng., 87, 698-706.
  • Seddegh S., Wang X. and Henderson A. D., 2016, Comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials, Appl. Therm. Eng., 93, 348-358.
  • Sharma S. D and Sagara K., 2005, Latent heat storage materials and systems: a review, Int. J. Green Energy, 2, 1–56.
  • Song M., Niu F., Mao, N., Hu, Y. and Deng, S., 2018, Review on building energy performance improvement 13 using phase change materials, Energy and Buildings, 158, 776-793.
  • Tao Y. B, and Carey V.P., 2016, Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit, Applied Energy, 179, 203-210.
  • Tao Y. B, and He Y. L., 2011, Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary, Applied Energy, 88, 4172-4179.
  • Trp A., 2005, An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol. Energy, 79, 648–60.
  • Wang W.W., Zhang K., Wang L. B. and He Y. L., 2013, Numerical study of the heat charging and discharging characteristics of a shell-and-tube phase change heat storage unit, Appl. Therm. Eng., 58, 542-553.
  • Wang Y., Wang L., Xie, N., Lin X., and Chena, H., 2016, Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit, Int. J. Heat Mass Tran., 99, 770-781.
  • Xu B., Li P. and Chan C., 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments, Applied Energy, 160, 286-307.
  • Zalba B, Marin J.M, Cabeza L.F. and Mehling H., 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl.Therm. Eng., 23, 251–283.
  • Zhang Y. and Faghri A., 1996, Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube, Journal of Enhanced Heat Transfer, 3, 119-127.
There are 46 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Orhan Aydın This is me

Mete Avcı This is me

M. Yusuf Yazıcı This is me

Mithat Akgun This is me

Publication Date October 31, 2018
Published in Issue Year 2018 Volume: 38 Issue: 2

Cite

APA Aydın, O., Avcı, M., Yazıcı, M. Y., Akgun, M. (2018). ENHANCING STORAGE PERFORMANCE IN A TUBE-IN SHELL STORAGE UNIT BY ATTACHING A CONDUCTING FIN TO THE BOTTOM OF THE TUBE. Isı Bilimi Ve Tekniği Dergisi, 38(2), 1-13.