Research Article
BibTex RIS Cite

KARBON BAZLI NANOKANALLARDA SUYUN HİDRODİNAMİK KAYMA MESAFESİNIN MOLEKÜLER DİNAMİK YÖNTEMİ İLE İNCELENMESİ

Year 2019, Volume: 39 Issue: 2, 137 - 149, 31.10.2019

Abstract

Bu calışmada karbon-bazlı nanokanallar ve periyodik sistemlerdeki iyonsuz su akışları, moleküler dinamik simülasyonları ile incelenmiştir. Farklı boyutlara sahip karbon nanotüpler ve grafen kanalların içindeki kayma mesafeleri, sabit termodinamik koşullar altında elde edilmiştir. Kayma mesafesi Navier kayma sınır koşulları ile ifade edilip, kanal yüksekliğindeki hız profilleri kullanılarak hesaplanmıştır. Nanokanal simülasyonları boyut ve şekilden bağımsız olarak hem silindirik karbon nanotüplerde hem de düzlemsel grafen kanallarda sabit eksenel hız (plug) profilleri ve yüksek kayma mesafesi göstermiştir. Bu yüksek kayma mesafelerinin sebepleri, karbon nanokanalların sahip olduğu pürüzsüz yüzey alanı ve yüksek atom yoğunluğu ve bununla birlikte su molekülleri ile karbon atomları arasında oluşan zayıf moleküler arası bağlardır. Boyutları 2.71 nm ile 9.52 nm arasında değişen grafen kanalları için yaklaşık 64 nm büyüklüğünde sabit bir kayma mesafesi elde edilirken, bu parametrenin karbon nanotüplerde kanal çapının bir fonksiyonu olduğu tespit edilmiştir. Benzer boyutlara sahip karbon nanotüplerde, kayma mesafesi artan nanotüp çapı ile azalmakta olduğu gozlenmiştir, 204 nm ile 68 nm arası değişen kayma mesafeseleri elde edilmiştir.

References

  • Abascal J.L. and Vega C., 2005, A general purpose model for the condensed phases of water, J Chem Phys, 123, 234505.
  • Angelova A., Angelov B., Lesieur S., Mutafchieva R., Ollivon M., Bourgaux C., Willumeit R. and Couvreur P, 2018, Dynamic control of nanofluidic channels in protein drug delivery vehicles, J. Drug Deliv. Sci. Technol. 18, 41-45.
  • Akkus Y., Nguyen C.T., Celebi A.T. and Beskok A., 2019, A first look at the performance of nano-grooved heat pipes, Int. J. Heat Mass Transfer, 132, 280-287.
  • Backer J., Lowe C., Hoefsloot H. and Iedema P, 2005, Poiseuille flow to measure the viscosity of particle model fluids, J. Chem. Phys., 122, 154503.
  • Binder K., Horbach J., Kob W., Paul W. and Varnik F., 2004, Molecular dynamics simulations, J. Phys.: Condens. Matter, 16, S429.
  • Bitsanis I., Somers S.A., Davis H.T., Tirrell M., 1990, Microscopic dynamics of flow in molecularly narrow pores, J. Chem. Phys., 93, 3427-3431.
  • Bocquet L. and Barrat J.-L., 1994, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids, Phys. Rev. E, 49, 3079.
  • Borg M.K., Lockerby D.A., Ritos K. and Reese J.M., 2018, Multiscale simulation of water flow through laboratory-scale nanotube membranes, J. Membr. Sci., 567, 115-126.
  • Celebi A.T., Kirca M., Baykasoglu C., Mugan A., and To, A.C., 2014, Tensile behavior of heat welded CNT network structures, Comput. Mater. Sci., 88, 14-21
  • Celebi A.T., Barisik M. and Beskok A., 2017, Electric field controlled transport of water in graphene nano-channels, J. Chem. Phys., 147, 164311.
  • Celebi A.T., Barisik M. and Beskok A., 2018, Surface charge-dependent transport of water in graphene nano-channels, Microfluid. Nanofluid., 22, 7
  • Celebi A.T. and Beskok A., 2018, Molecular and Continuum Transport Perspectives on Electroosmotic Slip Flows, J. Phys. Chem. C, 122, 9699-9709.
  • Cohen-Tanugi D. and Grossman J.C., 2012, Water desalination across nanoporous graphene, Nano Lett., 12, 3602-3608.
  • Cracknell R.F., Nicholson D. and Quirke N., 1995, Direct molecular dynamics simulation of flow down a chemical potential gradient in a slit-shaped micropore, Phys. Rev. Lett., 74, 2463.
  • Du F., Qu L., Xia Z., Feng L. and Dai L., 2011, Membranes of vertically aligned superlong carbon nanotubes, Langmuir, 27, 8437-8443.
  • Eijkel J.C. and Van Den Berg A., 2005, Nanofluidics: what is it and what can we expect from it?, Microfluid. Nanofluid., 1, 249-267.
  • Falk K., Sedlmeier F., Joly L., Netz R.R. and Bocquet L., 2010, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Lett., 10, 4067-4073.
  • Fanourgakis G.S., Medina J. and Prosmiti R., 2012, Determining the bulk viscosity of rigid water models, J. Phys. Chem. A, 116, 2564-2570.
  • Ghorbanian J. and Beskok A., 2016, Scale effects in nano-channel liquid flows, Microfluid. Nanofluid., 20, 121.
  • Ghorbanian J., Celebi A.T. and Beskok A., 2016, A phenomenological continuum model for force-driven nano-channel liquid flows, J. Chem. Phys., 145, 184109.
  • Ghorbanian J., 2017, Thermal-Fluid Transport Phenomena in Nano-Scale Liquid Flows, Southern Methodist University.
  • González M.A. and Abascal J.L., 2010, The shear viscosity of rigid water models, J. Chem. Phys., 132, 096101.
  • Ho T.A. and Striolo A., 2013, Polarizability effects in molecular dynamics simulations of the graphene-water interface, J. Chem. Phys., 138, 054117.
  • Holt J.K., Park H.G., Wang Y., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A. and Bakajin O., 2006, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, 1034-1037.
  • Huang D.M., Cottin-Bizonne C., Ybert C. and Bocquet L., 2008, Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip, Langmuir, 24, 1442-1450.
  • Joshi R., Carbone P., Wang F-C., Kravets V.G., Su Y., Grigorieva I.V., Wu H., Geim A.K. and Nair R.R., 2014, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343, 752-754.
  • Kannam S.K., Todd B., Hansen J.S. and Daivis P.J., 2013, How fast does water flow in carbon nanotubes? J. Chem. Phys., 138, 094701.
  • Kannam S.K., Todd B., Hansen J.S. and Daivis PJ, 2011, Slip flow in graphene nanochannels, J. Chem. Phys., 135, 016313.
  • Karniadakis G.E., Beskok A. and Aluru N., 2006, Microflows and nanoflows: fundamentals and simulation, Springer Science & Business Media.
  • Karnik R., Castelino K. and Majumdar A., 2006, Field-effect control of protein transport in a nanofluidic transistor circuit, Appl. Phys. Lett., 88, 123114.
  • Koplik J. and Banavar J.R., 1995, Continuum deductions from molecular hydrodynamics, Annual Review of Fluid Mechanics, 27, 257-292.
  • Kotsalis E., Walther J. and Koumoutsakos P., 2004, Multiphase water flow inside carbon nanotubes, Int. J. Multiphase Flow, 30, 995-1010.
  • Koumoutsakos P., Jaffe R., Werder T. and Walther J., 2003, On the validity of the no-slip condition in nanofluidics, Laudon M (ed) 2003 Nanotechnology Conference and Trade Show, vol 1. Computational Publications. San Francisco, California, USA, pp 148–151
  • Kumar Kannam S., Todd B., Hansen J.S. and Daivis P.J., 2012, Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations, J. Chem. Phys., 136, 024705.
  • Liu G., Jin W. and Xu N., 2015, Graphene-based membranes, Chem. Soc. Rev., 44, 5016-5030.
  • Maali A,. Cohen-Bouhacina T. and Kellay H., 2008, Measurement of the slip length of water flow on graphite surface. Appl Phys Lett 2008, 92:053101.
  • Majumder M., Chopra N., Andrews R. and Hinds B.J., 2005, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, 44.
  • Markesteijn A., Hartkamp R., Luding S. and Westerweel J., 2012, A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel, J. Chem. Phys., 136, 134104.
  • Miyamoto S. and Kollman P.A., 1992, SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem., 13, 952-962.
  • Plimpton S., Pollock R. and Stevens M., 1997, Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: Proceedings of the eighth SIAM conference on parallel processing for scientifc computing, p 8e21.
  • Plimpton S., 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19.
  • Qiao R. and Aluru N., 2003, Ion concentrations and velocity profiles in nanochannel electroosmotic flows, J. Chem. Phys., 118, 4692-4701.
  • Qin X., Yuan Q., Zhao Y., Xie S. and Liu Z., 2011, Measurement of the rate of water translocation through carbon nanotubes, Nano Lett., 11, 2173-2177.
  • Ramos-Alvarado B., Kumar S. and Peterson G., 2016, Hydrodynamic slip length as a surface property, Phys. Rev. E, 93, 023101.
  • Sam A., Hartkamp R., Kannam S.K. and Sathian S.P., 2018, Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations, Nanotechnology, 29, 485404.
  • Secchi E., Marbach S., Niguès A., Stein D., Siria A. and Bocquet L., 2016, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537, 210.
  • Shiomi J. and Maruyama S., 2009, Water transport inside a single-walled carbon nanotube driven by a temperature gradient, Nanotechnology, 20, 055708.
  • Sofos F., Karakasidis T. and Liakopoulos A., 2009, Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls, Int. J. Heat Mass Transfer, 52, 735-743.
  • Suk M. and Aluru N., 2013, Molecular and continuum hydrodynamics in graphene nanopores, RSC Advances, 3, 9365-9372.
  • Tazi S., Boţan A., Salanne M., Marry V., Turq P. and Rotenberg B., 2012, Diffusion coefficient and shear viscosity of rigid water models, J. Phys.: Condens. Matter, 24, 284117.
  • Thomas J. and McGaughey A., 2008, Density, distribution, and orientation of water molecules inside and outside carbon nanotubes, J. Chem. Phys., 128, 084715.
  • Thomas J.A., McGaughey A.J. and Kuter-Arnebeck O., 2010, Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation, Int. J. Therm. Sci., 49, 281-289.
  • Thomas J.A. and McGaughey A.J., 2008, Reassessing fast water transport through carbon nanotubes, Nano Lett., 8, 2788-2793.
  • Travis K.P., Todd B. and Evans D.J., 1997, Departure from Navier-Stokes hydrodynamics in confined liquids, Phys. Rev. E, 55, 4288.
  • Voronov R.S., Papavassiliou D.V. and Lee L.L., 2007, Slip length and contact angle over hydrophobic surfaces, Chem. Phys. Lett., 441, 273-276.
  • Wagemann E., Oyarzua E., Walther J.H. and Zambrano H.A., 2017, Slip divergence of water flow in graphene nanochannels: the role of chirality, PCCP, 19, 8646-8652.
  • Walther J.H., Ritos K., Cruz-Chu E.R., Megaridis C.M. and Koumoutsakos P., 2013, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett., 13, 1910-1914.
  • Wang G.J. and Hadjiconstantinou N.G., 2015, Why are fluid densities so low in carbon nanotubes?, Phys. Fluids, 27, 052006.
  • Wang Y., Wang Y., Chen K. and Li B., 2011, Non-Equilibrium Molecular Dynamics Simulation of Electrokinetic Effects on Heterogeneous Ionic Transport in Nano-Channel, Chem. Eng. Sci., 66, 2807−2816.
  • Wei N., Peng X. and Xu Z., 2014, Understanding water permeation in graphene oxide membranes, ACS applied materials & interfaces, 6, 5877-5883.
  • Werder T., Walther J.H., Jaffe R., Halicioglu T. and Koumoutsakos P., 2003, On the water− carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B, 107, 1345-1352.
  • Whitby M. and Quirke N., 2007: Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2, 87.
  • Xie Q., Alibakhshi M.A., Jiao S., Xu Z., Hempel M., Kong J., Park H.G. and Duan C., 2018, Fast water transport in graphene nanofluidic channels, Nature nanotechnology, 13, 238-245.
  • Xiong W., Liu J.Z., Ma M., Xu Z., Sheridan J. and Zheng Q., 2011, Strain engineering water transport in graphene nanochannels, Phys. Rev. E, 84, 056329.

HYDRODYNAMIC SLIP LENGTH OF WATER IN CARBON-BASED NANOCONFINEMENTS: A MOLECULAR DYNAMICS INVESTIGATION

Year 2019, Volume: 39 Issue: 2, 137 - 149, 31.10.2019

Abstract

Molecular dynamics (MD) simulations of force-driven deionized water flows both in nanoscale periodic systems and in carbon-based nanoconfinements are performed. Carbon nanotubes (CNTs) and graphene nanochannels are considered to investigate the size and curvature effects on the slip length of water at a fixed thermodynamic state. Nanochannel flow simulations exhibit plug velocity profiles with large slip length at the interface that are modeled by Navier-type slip boundary condition. Large slip lengths are mainly due to the high surface density of carbon-based nanoconduits and weak interaction strengths between carbon atoms and water molecules. A constant slip length of 64 nm in graphene channels are observed for heights varying from 2.71 to 9.52 nm. However, considering comparable CNT diameters, slip lengths are found to be size-dependent. Slip length in CNTs decreases from 204 nm to approximately 68 nm with increased diameter.

References

  • Abascal J.L. and Vega C., 2005, A general purpose model for the condensed phases of water, J Chem Phys, 123, 234505.
  • Angelova A., Angelov B., Lesieur S., Mutafchieva R., Ollivon M., Bourgaux C., Willumeit R. and Couvreur P, 2018, Dynamic control of nanofluidic channels in protein drug delivery vehicles, J. Drug Deliv. Sci. Technol. 18, 41-45.
  • Akkus Y., Nguyen C.T., Celebi A.T. and Beskok A., 2019, A first look at the performance of nano-grooved heat pipes, Int. J. Heat Mass Transfer, 132, 280-287.
  • Backer J., Lowe C., Hoefsloot H. and Iedema P, 2005, Poiseuille flow to measure the viscosity of particle model fluids, J. Chem. Phys., 122, 154503.
  • Binder K., Horbach J., Kob W., Paul W. and Varnik F., 2004, Molecular dynamics simulations, J. Phys.: Condens. Matter, 16, S429.
  • Bitsanis I., Somers S.A., Davis H.T., Tirrell M., 1990, Microscopic dynamics of flow in molecularly narrow pores, J. Chem. Phys., 93, 3427-3431.
  • Bocquet L. and Barrat J.-L., 1994, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids, Phys. Rev. E, 49, 3079.
  • Borg M.K., Lockerby D.A., Ritos K. and Reese J.M., 2018, Multiscale simulation of water flow through laboratory-scale nanotube membranes, J. Membr. Sci., 567, 115-126.
  • Celebi A.T., Kirca M., Baykasoglu C., Mugan A., and To, A.C., 2014, Tensile behavior of heat welded CNT network structures, Comput. Mater. Sci., 88, 14-21
  • Celebi A.T., Barisik M. and Beskok A., 2017, Electric field controlled transport of water in graphene nano-channels, J. Chem. Phys., 147, 164311.
  • Celebi A.T., Barisik M. and Beskok A., 2018, Surface charge-dependent transport of water in graphene nano-channels, Microfluid. Nanofluid., 22, 7
  • Celebi A.T. and Beskok A., 2018, Molecular and Continuum Transport Perspectives on Electroosmotic Slip Flows, J. Phys. Chem. C, 122, 9699-9709.
  • Cohen-Tanugi D. and Grossman J.C., 2012, Water desalination across nanoporous graphene, Nano Lett., 12, 3602-3608.
  • Cracknell R.F., Nicholson D. and Quirke N., 1995, Direct molecular dynamics simulation of flow down a chemical potential gradient in a slit-shaped micropore, Phys. Rev. Lett., 74, 2463.
  • Du F., Qu L., Xia Z., Feng L. and Dai L., 2011, Membranes of vertically aligned superlong carbon nanotubes, Langmuir, 27, 8437-8443.
  • Eijkel J.C. and Van Den Berg A., 2005, Nanofluidics: what is it and what can we expect from it?, Microfluid. Nanofluid., 1, 249-267.
  • Falk K., Sedlmeier F., Joly L., Netz R.R. and Bocquet L., 2010, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Lett., 10, 4067-4073.
  • Fanourgakis G.S., Medina J. and Prosmiti R., 2012, Determining the bulk viscosity of rigid water models, J. Phys. Chem. A, 116, 2564-2570.
  • Ghorbanian J. and Beskok A., 2016, Scale effects in nano-channel liquid flows, Microfluid. Nanofluid., 20, 121.
  • Ghorbanian J., Celebi A.T. and Beskok A., 2016, A phenomenological continuum model for force-driven nano-channel liquid flows, J. Chem. Phys., 145, 184109.
  • Ghorbanian J., 2017, Thermal-Fluid Transport Phenomena in Nano-Scale Liquid Flows, Southern Methodist University.
  • González M.A. and Abascal J.L., 2010, The shear viscosity of rigid water models, J. Chem. Phys., 132, 096101.
  • Ho T.A. and Striolo A., 2013, Polarizability effects in molecular dynamics simulations of the graphene-water interface, J. Chem. Phys., 138, 054117.
  • Holt J.K., Park H.G., Wang Y., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A. and Bakajin O., 2006, Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, 1034-1037.
  • Huang D.M., Cottin-Bizonne C., Ybert C. and Bocquet L., 2008, Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip, Langmuir, 24, 1442-1450.
  • Joshi R., Carbone P., Wang F-C., Kravets V.G., Su Y., Grigorieva I.V., Wu H., Geim A.K. and Nair R.R., 2014, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343, 752-754.
  • Kannam S.K., Todd B., Hansen J.S. and Daivis P.J., 2013, How fast does water flow in carbon nanotubes? J. Chem. Phys., 138, 094701.
  • Kannam S.K., Todd B., Hansen J.S. and Daivis PJ, 2011, Slip flow in graphene nanochannels, J. Chem. Phys., 135, 016313.
  • Karniadakis G.E., Beskok A. and Aluru N., 2006, Microflows and nanoflows: fundamentals and simulation, Springer Science & Business Media.
  • Karnik R., Castelino K. and Majumdar A., 2006, Field-effect control of protein transport in a nanofluidic transistor circuit, Appl. Phys. Lett., 88, 123114.
  • Koplik J. and Banavar J.R., 1995, Continuum deductions from molecular hydrodynamics, Annual Review of Fluid Mechanics, 27, 257-292.
  • Kotsalis E., Walther J. and Koumoutsakos P., 2004, Multiphase water flow inside carbon nanotubes, Int. J. Multiphase Flow, 30, 995-1010.
  • Koumoutsakos P., Jaffe R., Werder T. and Walther J., 2003, On the validity of the no-slip condition in nanofluidics, Laudon M (ed) 2003 Nanotechnology Conference and Trade Show, vol 1. Computational Publications. San Francisco, California, USA, pp 148–151
  • Kumar Kannam S., Todd B., Hansen J.S. and Daivis P.J., 2012, Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations, J. Chem. Phys., 136, 024705.
  • Liu G., Jin W. and Xu N., 2015, Graphene-based membranes, Chem. Soc. Rev., 44, 5016-5030.
  • Maali A,. Cohen-Bouhacina T. and Kellay H., 2008, Measurement of the slip length of water flow on graphite surface. Appl Phys Lett 2008, 92:053101.
  • Majumder M., Chopra N., Andrews R. and Hinds B.J., 2005, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, 44.
  • Markesteijn A., Hartkamp R., Luding S. and Westerweel J., 2012, A comparison of the value of viscosity for several water models using Poiseuille flow in a nano-channel, J. Chem. Phys., 136, 134104.
  • Miyamoto S. and Kollman P.A., 1992, SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem., 13, 952-962.
  • Plimpton S., Pollock R. and Stevens M., 1997, Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: Proceedings of the eighth SIAM conference on parallel processing for scientifc computing, p 8e21.
  • Plimpton S., 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19.
  • Qiao R. and Aluru N., 2003, Ion concentrations and velocity profiles in nanochannel electroosmotic flows, J. Chem. Phys., 118, 4692-4701.
  • Qin X., Yuan Q., Zhao Y., Xie S. and Liu Z., 2011, Measurement of the rate of water translocation through carbon nanotubes, Nano Lett., 11, 2173-2177.
  • Ramos-Alvarado B., Kumar S. and Peterson G., 2016, Hydrodynamic slip length as a surface property, Phys. Rev. E, 93, 023101.
  • Sam A., Hartkamp R., Kannam S.K. and Sathian S.P., 2018, Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations, Nanotechnology, 29, 485404.
  • Secchi E., Marbach S., Niguès A., Stein D., Siria A. and Bocquet L., 2016, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537, 210.
  • Shiomi J. and Maruyama S., 2009, Water transport inside a single-walled carbon nanotube driven by a temperature gradient, Nanotechnology, 20, 055708.
  • Sofos F., Karakasidis T. and Liakopoulos A., 2009, Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls, Int. J. Heat Mass Transfer, 52, 735-743.
  • Suk M. and Aluru N., 2013, Molecular and continuum hydrodynamics in graphene nanopores, RSC Advances, 3, 9365-9372.
  • Tazi S., Boţan A., Salanne M., Marry V., Turq P. and Rotenberg B., 2012, Diffusion coefficient and shear viscosity of rigid water models, J. Phys.: Condens. Matter, 24, 284117.
  • Thomas J. and McGaughey A., 2008, Density, distribution, and orientation of water molecules inside and outside carbon nanotubes, J. Chem. Phys., 128, 084715.
  • Thomas J.A., McGaughey A.J. and Kuter-Arnebeck O., 2010, Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation, Int. J. Therm. Sci., 49, 281-289.
  • Thomas J.A. and McGaughey A.J., 2008, Reassessing fast water transport through carbon nanotubes, Nano Lett., 8, 2788-2793.
  • Travis K.P., Todd B. and Evans D.J., 1997, Departure from Navier-Stokes hydrodynamics in confined liquids, Phys. Rev. E, 55, 4288.
  • Voronov R.S., Papavassiliou D.V. and Lee L.L., 2007, Slip length and contact angle over hydrophobic surfaces, Chem. Phys. Lett., 441, 273-276.
  • Wagemann E., Oyarzua E., Walther J.H. and Zambrano H.A., 2017, Slip divergence of water flow in graphene nanochannels: the role of chirality, PCCP, 19, 8646-8652.
  • Walther J.H., Ritos K., Cruz-Chu E.R., Megaridis C.M. and Koumoutsakos P., 2013, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett., 13, 1910-1914.
  • Wang G.J. and Hadjiconstantinou N.G., 2015, Why are fluid densities so low in carbon nanotubes?, Phys. Fluids, 27, 052006.
  • Wang Y., Wang Y., Chen K. and Li B., 2011, Non-Equilibrium Molecular Dynamics Simulation of Electrokinetic Effects on Heterogeneous Ionic Transport in Nano-Channel, Chem. Eng. Sci., 66, 2807−2816.
  • Wei N., Peng X. and Xu Z., 2014, Understanding water permeation in graphene oxide membranes, ACS applied materials & interfaces, 6, 5877-5883.
  • Werder T., Walther J.H., Jaffe R., Halicioglu T. and Koumoutsakos P., 2003, On the water− carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J. Phys. Chem. B, 107, 1345-1352.
  • Whitby M. and Quirke N., 2007: Fluid flow in carbon nanotubes and nanopipes. Nature Nanotechnology, 2, 87.
  • Xie Q., Alibakhshi M.A., Jiao S., Xu Z., Hempel M., Kong J., Park H.G. and Duan C., 2018, Fast water transport in graphene nanofluidic channels, Nature nanotechnology, 13, 238-245.
  • Xiong W., Liu J.Z., Ma M., Xu Z., Sheridan J. and Zheng Q., 2011, Strain engineering water transport in graphene nanochannels, Phys. Rev. E, 84, 056329.
There are 64 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Alper Celebı This is me

Jafar Ghorbanıan This is me

Ali Beskok This is me

Publication Date October 31, 2019
Published in Issue Year 2019 Volume: 39 Issue: 2

Cite

APA Celebı, A., Ghorbanıan, J., & Beskok, A. (2019). HYDRODYNAMIC SLIP LENGTH OF WATER IN CARBON-BASED NANOCONFINEMENTS: A MOLECULAR DYNAMICS INVESTIGATION. Isı Bilimi Ve Tekniği Dergisi, 39(2), 137-149.