Araştırma Makalesi
BibTex RIS Kaynak Göster

BİR ELEKTRİKLİ KÖRÜKLÜ ŞEHİR İÇİ OTOBÜSÜN YILLIK ISI YÜKÜ KESTİRİMİ

Yıl 2020, Cilt: 40 Sayı: 1, 27 - 36, 30.04.2020

Öz

Bu çalışma, körüklü elektrikli şehir içi otobüsünün ısı yükünü tahmin etmek için ayrıntılı bir yöntem sunmaktadır. Güneş, metabolik, ortam ve havalandırma ısı yüklerinden oluşan termal yük, bir yıllık bir süre için saatlik olarak tahmin edilmiştir. Kullanılan model, saatlik yolcu doluluk oranını, hattın bulunduğu bölgedeki saatlik hava durumunu ve saatlik güneş yüklerini girdi olarak alır ve ısı yükünü buna göre tahmin eder. Her termal yükün önemini ve katkısını belirlemek için tüm yükler ayrı ayrı hesaplanmıştır. Her yükün zaman içindeki katkısının değişimini gözlemlemek için yılın her saati için hesaplamalar yapılmıştır. Önerilen yöntemle, bir elektrik otobüsün termal yükü sistem tasarım aşamasında tahmin edilebilir ve elektrikli otobüsün HVAC sistemi buna göre seçilebilir.

Kaynakça

  • Aktacir M. A., Büyükalaca O., Bulut H. and Yilmaz T., 2008, Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments, Energy Conversion and Management, 49(6), 1766–1773.
  • Anna Laura P., Veronica Lucia C., Cristina P., Claudia F., Ilaria P., Gloria P., 2016, Calculation of Direct Solar and Diffuse Radiation in Israel Stefan, 1576, 1–202.
  • ASHRAE Handbook of Fundamental, American Society of Heating, Refrigerating, and Air Conditioning, 2001.
  • ASHRAE Standard, “Ventilation for Acceptable Indoor Air Quality,” ASHRAE Standard 62, 1999
  • Fayazbakhsh, M. A. and Bahrami M., 2013, Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method.
  • Gis W., Kruczynski S., Taubert S., Wierzejski A., 2017, Studies of energy use by electric buses in SORT tests
  • Graurs I., Laizans A., Rajeckis P. and Rubenis A., 2015, Public bus energy consumption investigation for transition to electric power and semi-dynamic charging, Engineering for Rural Development, 14, 366–371.
  • Juan A. A., Mendez C. A., Faulin J., De Armas J. and Grasman S. E., 2016, Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges, Energies, 9(2), 1–21.
  • Kamiya Y., Daisho Y., Takahashi S. and Narusawa K., 2006, Development and performance evaluation of an advanced electric micro bus transportation system - Part 1: Waseda Advanced Electric Micro Bus, 22nd International Electric Vehicle Symposium (EVS), 7, 836–847.
  • Lee J. W., Jang E. Y., Lee S. H., Ryou H. S., Choi S., Kim Y., 2014, Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment, International Journal of Thermal Sciences, 75, 36–44.
  • Lee J-Y., Choi J-W. and Kim H., 2008, Determination of Body Surface Area and Formulas to Estimate Body Surface Area Using the Alginate Method, Journal of Physiological Anthropology
  • Li W., Sun J., 2013, Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment, Applied Thermal Engineering, 50(1), 37–45.
  • Pihlatie M., Kukkonen S., Halmeaho T., Karvonen V. and Nylund N. O., 2015, Fully electric city buses - The viable option, 2014 IEEE International Electric Vehicle Conference, IEVC 2014.
  • Shellenberger M. and Nordhaus T., 2004, The death of environmentalism
  • Tosun E., Bilgili M., Tuccar G., Yasar A., Aydin K., 2016, Exergy analysis of an inter-city bus air-conditioning system, International Journal of Exergy, 20(4), 445.
  • Tran N., Powell B., Marks H., West R., Kvasnak A., 2009, Strategies for Design and Construction of High-Reflectance Asphalt Pavements, Transportation Research Record: Journal of the Transportation Research Board, 2098(1), 124–130.
  • Turkish Statistical Institute, 2010, Health Survey, 3654 Ankara
  • Ünal Ş., 2016, An experımental study on a bus aır condıtıoner to determıne ıts conformıty to desıgn and comfort condıtıons, Journal of Thermal Engineering, 3(1), 1089-1101.
  • www.otobussaatleri.net, 2019, Retrieved from https://www.otobussaatleri.net/istanbul-metrobus-hatlari-haritasi/

PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS

Yıl 2020, Cilt: 40 Sayı: 1, 27 - 36, 30.04.2020

Öz

This study presents a detailed method to estimate the thermal load of an articulated electric urban bus. Thermal load, which consists of solar, metabolic, ambient and ventilation heat loads, is estimated hourly for a one year period. A mathematical model takes into account the hourly passenger occupancy rate, hourly weather condition of the line and hourly solar loads as input and predicts the heat load accordingly. In order to determine the importance and contribution of each thermal load, all loads are calculated individually. Calculations are made for each hour of a year in order to observe the change of the contribution of each load in time. With the proposed method, the thermal load of an electric bus can be predicted in the system design phase and the HVAC system of the bus can be selected accordingly.

Kaynakça

  • Aktacir M. A., Büyükalaca O., Bulut H. and Yilmaz T., 2008, Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments, Energy Conversion and Management, 49(6), 1766–1773.
  • Anna Laura P., Veronica Lucia C., Cristina P., Claudia F., Ilaria P., Gloria P., 2016, Calculation of Direct Solar and Diffuse Radiation in Israel Stefan, 1576, 1–202.
  • ASHRAE Handbook of Fundamental, American Society of Heating, Refrigerating, and Air Conditioning, 2001.
  • ASHRAE Standard, “Ventilation for Acceptable Indoor Air Quality,” ASHRAE Standard 62, 1999
  • Fayazbakhsh, M. A. and Bahrami M., 2013, Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method.
  • Gis W., Kruczynski S., Taubert S., Wierzejski A., 2017, Studies of energy use by electric buses in SORT tests
  • Graurs I., Laizans A., Rajeckis P. and Rubenis A., 2015, Public bus energy consumption investigation for transition to electric power and semi-dynamic charging, Engineering for Rural Development, 14, 366–371.
  • Juan A. A., Mendez C. A., Faulin J., De Armas J. and Grasman S. E., 2016, Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges, Energies, 9(2), 1–21.
  • Kamiya Y., Daisho Y., Takahashi S. and Narusawa K., 2006, Development and performance evaluation of an advanced electric micro bus transportation system - Part 1: Waseda Advanced Electric Micro Bus, 22nd International Electric Vehicle Symposium (EVS), 7, 836–847.
  • Lee J. W., Jang E. Y., Lee S. H., Ryou H. S., Choi S., Kim Y., 2014, Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment, International Journal of Thermal Sciences, 75, 36–44.
  • Lee J-Y., Choi J-W. and Kim H., 2008, Determination of Body Surface Area and Formulas to Estimate Body Surface Area Using the Alginate Method, Journal of Physiological Anthropology
  • Li W., Sun J., 2013, Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment, Applied Thermal Engineering, 50(1), 37–45.
  • Pihlatie M., Kukkonen S., Halmeaho T., Karvonen V. and Nylund N. O., 2015, Fully electric city buses - The viable option, 2014 IEEE International Electric Vehicle Conference, IEVC 2014.
  • Shellenberger M. and Nordhaus T., 2004, The death of environmentalism
  • Tosun E., Bilgili M., Tuccar G., Yasar A., Aydin K., 2016, Exergy analysis of an inter-city bus air-conditioning system, International Journal of Exergy, 20(4), 445.
  • Tran N., Powell B., Marks H., West R., Kvasnak A., 2009, Strategies for Design and Construction of High-Reflectance Asphalt Pavements, Transportation Research Record: Journal of the Transportation Research Board, 2098(1), 124–130.
  • Turkish Statistical Institute, 2010, Health Survey, 3654 Ankara
  • Ünal Ş., 2016, An experımental study on a bus aır condıtıoner to determıne ıts conformıty to desıgn and comfort condıtıons, Journal of Thermal Engineering, 3(1), 1089-1101.
  • www.otobussaatleri.net, 2019, Retrieved from https://www.otobussaatleri.net/istanbul-metrobus-hatlari-haritasi/
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Nicem Tanyeri Bu kişi benim

Çağlar Başlamışlı Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 40 Sayı: 1

Kaynak Göster

APA Tanyeri, N., & Başlamışlı, Ç. (2020). PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS. Isı Bilimi Ve Tekniği Dergisi, 40(1), 27-36.
AMA Tanyeri N, Başlamışlı Ç. PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS. Isı Bilimi ve Tekniği Dergisi. Nisan 2020;40(1):27-36.
Chicago Tanyeri, Nicem, ve Çağlar Başlamışlı. “PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS”. Isı Bilimi Ve Tekniği Dergisi 40, sy. 1 (Nisan 2020): 27-36.
EndNote Tanyeri N, Başlamışlı Ç (01 Nisan 2020) PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS. Isı Bilimi ve Tekniği Dergisi 40 1 27–36.
IEEE N. Tanyeri ve Ç. Başlamışlı, “PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS”, Isı Bilimi ve Tekniği Dergisi, c. 40, sy. 1, ss. 27–36, 2020.
ISNAD Tanyeri, Nicem - Başlamışlı, Çağlar. “PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS”. Isı Bilimi ve Tekniği Dergisi 40/1 (Nisan 2020), 27-36.
JAMA Tanyeri N, Başlamışlı Ç. PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS. Isı Bilimi ve Tekniği Dergisi. 2020;40:27–36.
MLA Tanyeri, Nicem ve Çağlar Başlamışlı. “PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS”. Isı Bilimi Ve Tekniği Dergisi, c. 40, sy. 1, 2020, ss. 27-36.
Vancouver Tanyeri N, Başlamışlı Ç. PREDICTION OF THE ANNUAL HEAT LOAD OF AN ARTICULATED ELECTRIC URBAN BUS. Isı Bilimi ve Tekniği Dergisi. 2020;40(1):27-36.