Araştırma Makalesi
BibTex RIS Kaynak Göster

SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ

Yıl 2018, Cilt: 38 Sayı: 1, 1 - 10, 30.04.2018

Öz

Bu çalışmada silindirik bir güneş damıtma sisteminde oluşan akış örgüsü ve elde edilen damıtım miktarı sayısal olarak incelenmiştir. Literatürde yer alan ve farklı koşullar altında deneysel olarak damıtım miktarları ölçülmüş bir sistemin geometrisi temel olarak seçilerek iki-boyutlu sayısal bir model oluşturulmuştur. Çalışmada akışkan olarak nemli hava kullanılmış; suyun kütle damıtım miktarı, yani suyun buharlaşması ve yoğuşmasından oluşan temel çalışma prensibi, su yüzeyindeki taşınım ile temsil edilmiştir. Sayısal model kullanılarak farklı sıcaklık sınır koşulları altında elde edilen kütle damıtım miktarları literatürde yer alan deneysel verilerle karşılaştırılmış ve %15 farklılık bandı içinde yer alan, iyi bir uyum içinde oldukları görülmüştür. Doğrulama çalışmasının ardından, elde edilen sayısal model sonuçları sistem içinde oluşan akış örgüsünü incelemek ve problem fiziğini daha iyi anlayabilmek için kullanılmıştır. Temel geometriye ek olarak iç hazne duvarı yüksekliği farklı iki geometri oluşturulmuş ve bu değişikliğin sonuçlar üzerindeki etkileri incelenmiştir. Temel geometri ile ulaşılan kütle damıtım miktarının incelenen tüm farklı sınır koşulları için, iç hazne duvarı yüksekliğindeki ilk azaltma ile (2. geometri) %5 dolayında arttığı, ikinci azaltma ile ise (3. geometri) %5-10 arası değişen değerlerde azaldığı gözlemlenmiş, monoton olarak değişmeyen bu sonuçlar akış örgüsü incelenerek açıklanmıştır.

Kaynakça

  • Ahsan A. ve Fukuhara T., 2009, Condensation Mass Transfer in Unsaturated Humid Air Inside Tubular Solar Still, Annual J. Hydraul. Eng., 53, 97-102.
  • Ahsan A., Imteaz M., Thomas U.A., Azmi M., Rahman A. ve Daud N.N., 2014, Parameters Affecting the Performance of a Low Cost Solar Still, Applied Energy, 114, 924-930.
  • Ahsan A., Islam K.M., Fukuhara T. ve Ghazali A.H., 2010, Experimental Study an Evaporation, Condensation and Production of a New Tubular Solar Still, Desalination, 260, 172-179.
  • Al-Gobaisi D., 2010, Desalination and Water Resources; History, Development and Management of Water Resources, Overview of the desalination and water resources, EOLSS, Paris, France.
  • Arunkumar T., Vinothkumar K., Ahsan A., Jayaprakash R. ve Kumar S., 2012, Experimental Study on Various Solar Still Designs, ISRN Renewable Energy, 2012.
  • Arunkumar T., Jayaprakash R., Ahsan A., Denkenberger D. ve Okundamiya M.S., 2013, Effect of Water and Air Flow on Concentric Tubular Solar Water Desalting System, Applied Energy, 103, 109-115.
  • Dunkle R.V., 1961, Solar Water Distillation: The Roof Type Still and a Multiple Effect Diffusion Still, Int. Dev. in Heat Transfer, 895-902.
  • El E., Arguhan Z., Çakmak G., Yücel H.L. ve Yıldız C., 2015, Effect of the Air Flow Rate of Blower on the Performance of the Solar Still, Isı Bilimi ve Tekniği Dergisi, 35, 145-152.
  • Elango T. ve Murugavel K.K., 2015, The Effect of the Water Depth on the Productivity for Single and Double Basin Double Slope Glass Solar Stills, Desalination, 359, 82-91.
  • Islam K. M. S. ve Fukuhara T., 2007, Production Analysis of a Tubular Solar Still, Doboku Gakkai Ronbunshuu B, 63(2), 108-119.
  • Malaiyappan P. ve Elumalai N., 2016, Numerical Investigations: Basin Materials of a Single-Basin and Single-Slope Solar Still, Desalination and Water Treatment, 57, 21211-21233.
  • Mills A.F., 1999, Basic Heat and Mass Transfer (2nd Ed.), Prentice Hall, Upper Saddle River, NJ.
  • Panchal N.H. ve Shah P.K., 2011, Modeling and Verification of Single Slope Solar Still Using ANSYS CFX, Int. J. Energy and Environment, 2, 985-998.
  • Panchal N.H. ve Shah P.K., 2013, Modeling and Verification of Hemispherical Solar Still Using ANSYS CFD, Int. J. Energy and Environment, 4, 427-440.
  • Rahbar N. ve Esfahani J.A., 2013, Productivity Estimation of a Single-Slope Solar Still: Theoretical and Numerical Analysis, Energy, 49, 289-297.
  • Rahbar N., Esfahani J.A. ve Fotouhi-Bafghi E., 2015, Estimation of Convective Heat Transfer Coefficient and Water-Productivity in a Tubular Solar Still-CFD Simulation and Theoretical Analysis, Solar Energy, 113, 313-323.
  • Rahmani A., Boutriaa A. ve Hadef A., 2015, An Experimental Approach To Improve the Basin Type Solar Still Using an Integrated Natural Circulation Loop, Energy Conversion and Management, 93, 298-308.
  • Setoodeh N., Rahimi R. ve Ameri A., 2011, Modeling and Determination of Heat Trasnfer Coefficient in a Basin Solar Still Using CFD, Desalination, 268, 103-110.
  • Tsilingiris P.T., 2008, Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100°C, Energy Conversion and Management, 49, 1098-1110.
  • UN Water www.un.org/waterforlifedecade/scarcity.shtml, son erişim Mayıs 2017.

COMPUTATIONAL INVESTIGATION OF THE EFFECT OF TROUGH HEIGHT IN A TUBULAR SOLAR STILL ON DISTILLATE PRODUCTIVITY

Yıl 2018, Cilt: 38 Sayı: 1, 1 - 10, 30.04.2018

Öz

In this study, the flow field and the amount of distillate produced in a tubular solar still is analyzed computationally. A two dimensional computational model is developed for a system geometry selected from the literature, which provides experimentally measured distillate productivity rates under different conditions. Humid air is used as a working fluid and distillate water mass productivity, i.e., the basic working principle consists of evaporation followed by condensation, is approximated by the convective transport at the water surface. Calculated distillate productivity values by the computational model under different temperature boundary conditions are compared against experimental values and a good agreement, where deviations are in the range of 15%, is found. Following the validation study, computational results are used to investigate the flow field generated in the system and to gain better insight to the physics. In addition to the base geometry, two additional geometries with a lower height troughs are created and effects of this change on the results are investigated. It is observed that the distillate productivity values obtained with the base geometry for all different boundary conditions increase around 5% with the first decrease in trough height (2. geometry), and decrease 5 to 10% with the second decrease in trough height (3. geometry), and this non-monotonic change in the results are explained by examining the flow field.

Kaynakça

  • Ahsan A. ve Fukuhara T., 2009, Condensation Mass Transfer in Unsaturated Humid Air Inside Tubular Solar Still, Annual J. Hydraul. Eng., 53, 97-102.
  • Ahsan A., Imteaz M., Thomas U.A., Azmi M., Rahman A. ve Daud N.N., 2014, Parameters Affecting the Performance of a Low Cost Solar Still, Applied Energy, 114, 924-930.
  • Ahsan A., Islam K.M., Fukuhara T. ve Ghazali A.H., 2010, Experimental Study an Evaporation, Condensation and Production of a New Tubular Solar Still, Desalination, 260, 172-179.
  • Al-Gobaisi D., 2010, Desalination and Water Resources; History, Development and Management of Water Resources, Overview of the desalination and water resources, EOLSS, Paris, France.
  • Arunkumar T., Vinothkumar K., Ahsan A., Jayaprakash R. ve Kumar S., 2012, Experimental Study on Various Solar Still Designs, ISRN Renewable Energy, 2012.
  • Arunkumar T., Jayaprakash R., Ahsan A., Denkenberger D. ve Okundamiya M.S., 2013, Effect of Water and Air Flow on Concentric Tubular Solar Water Desalting System, Applied Energy, 103, 109-115.
  • Dunkle R.V., 1961, Solar Water Distillation: The Roof Type Still and a Multiple Effect Diffusion Still, Int. Dev. in Heat Transfer, 895-902.
  • El E., Arguhan Z., Çakmak G., Yücel H.L. ve Yıldız C., 2015, Effect of the Air Flow Rate of Blower on the Performance of the Solar Still, Isı Bilimi ve Tekniği Dergisi, 35, 145-152.
  • Elango T. ve Murugavel K.K., 2015, The Effect of the Water Depth on the Productivity for Single and Double Basin Double Slope Glass Solar Stills, Desalination, 359, 82-91.
  • Islam K. M. S. ve Fukuhara T., 2007, Production Analysis of a Tubular Solar Still, Doboku Gakkai Ronbunshuu B, 63(2), 108-119.
  • Malaiyappan P. ve Elumalai N., 2016, Numerical Investigations: Basin Materials of a Single-Basin and Single-Slope Solar Still, Desalination and Water Treatment, 57, 21211-21233.
  • Mills A.F., 1999, Basic Heat and Mass Transfer (2nd Ed.), Prentice Hall, Upper Saddle River, NJ.
  • Panchal N.H. ve Shah P.K., 2011, Modeling and Verification of Single Slope Solar Still Using ANSYS CFX, Int. J. Energy and Environment, 2, 985-998.
  • Panchal N.H. ve Shah P.K., 2013, Modeling and Verification of Hemispherical Solar Still Using ANSYS CFD, Int. J. Energy and Environment, 4, 427-440.
  • Rahbar N. ve Esfahani J.A., 2013, Productivity Estimation of a Single-Slope Solar Still: Theoretical and Numerical Analysis, Energy, 49, 289-297.
  • Rahbar N., Esfahani J.A. ve Fotouhi-Bafghi E., 2015, Estimation of Convective Heat Transfer Coefficient and Water-Productivity in a Tubular Solar Still-CFD Simulation and Theoretical Analysis, Solar Energy, 113, 313-323.
  • Rahmani A., Boutriaa A. ve Hadef A., 2015, An Experimental Approach To Improve the Basin Type Solar Still Using an Integrated Natural Circulation Loop, Energy Conversion and Management, 93, 298-308.
  • Setoodeh N., Rahimi R. ve Ameri A., 2011, Modeling and Determination of Heat Trasnfer Coefficient in a Basin Solar Still Using CFD, Desalination, 268, 103-110.
  • Tsilingiris P.T., 2008, Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100°C, Energy Conversion and Management, 49, 1098-1110.
  • UN Water www.un.org/waterforlifedecade/scarcity.shtml, son erişim Mayıs 2017.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Özgür Ekici Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 38 Sayı: 1

Kaynak Göster

APA Ekici, Ö. (2018). SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 38(1), 1-10.
AMA Ekici Ö. SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. Nisan 2018;38(1):1-10.
Chicago Ekici, Özgür. “SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi Ve Tekniği Dergisi 38, sy. 1 (Nisan 2018): 1-10.
EndNote Ekici Ö (01 Nisan 2018) SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi 38 1 1–10.
IEEE Ö. Ekici, “SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ”, Isı Bilimi ve Tekniği Dergisi, c. 38, sy. 1, ss. 1–10, 2018.
ISNAD Ekici, Özgür. “SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi ve Tekniği Dergisi 38/1 (Nisan 2018), 1-10.
JAMA Ekici Ö. SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. 2018;38:1–10.
MLA Ekici, Özgür. “SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi Ve Tekniği Dergisi, c. 38, sy. 1, 2018, ss. 1-10.
Vancouver Ekici Ö. SİLİNDİRİK BİR GÜNEŞ DAMITMA SİSTEMİNİN İÇ HAZNE YÜKSEKLİĞİNİN DAMITIM MİKTARINA ETKİSİNİN SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. 2018;38(1):1-10.