Araştırma Makalesi
BibTex RIS Kaynak Göster

DÜŞÜK ÇEVRE SICAKLIĞINDA E10 VE M10 YAKITLI BUJİ İLE ATEŞLEMELİ BİR MOTORDA EGZOZ EMİSYONLARININ DEĞİŞİMİ

Yıl 2021, Cilt: 41 Sayı: 2, 227 - 237, 31.10.2021
https://doi.org/10.47480/isibted.1025931

Öz

Biyokütle yakıtları, petrol bazlı yakıtlar gibi geleneksel enerji kaynaklarına önemli alternatiflerdir. Biyokütle yakıtlar özellikle alkoller binek araçlarda kullanılmaktadır. Alkollerin benzinle karışımları genel kullanım alanını oluşturmaktadır. Özellikle benzinol gibi düşük oranlarda kullanıldığında motorda değişiklik yapılmasına gerek yoktur. Benzinol, benzin ve özellikle etanolden meydana gelen bir karışımıdır ve genellikle yüzde 10 alkol içerir. Bu çalışma, düşük oranda alkol içeren (% 10 etanol veya% 10 metanol) karışımların kullanımının, motorun soğuk çalıştırmadan sonraki 600 saniyede içerisinde buji ile ateşlemeli bir motorunun neden olduğu egzoz emisyonları üzerindeki etkisini ele almaktadır. Deney sonuçlarına göre, alkolün fakirleştirici etkisinin emisyonlar üzerindeki etkisi deneylerin ilk 150 saniyesinde daha nettir. Motor çıkışındaki CO emisyonu kurşunsuz benzine göre ortalama olarak E10 yakıtı ile % 34,5 ve M10 yakıtında % 44,8 azaldı. Ayrıca HC emisyonu, E10 yakıtında ilk 150 saniyede ortalama olarak % 23,2 ve M10’da % 25 azalma gözlenmiştir. Motor çıkışındaki NO söz konusu olduğunda, yakıt türüne göre dikkate değer bir fark yoktur. Ayrıca çalışmada, diğer deneysel koşulları değiştirmeden katalitik konvertör ısıtılarak egzoz uç çıkışındaki emisyonlar ve konvertör verimi incelenmiştir. Tüm yakıtlarda emisyonlar önemli ölçüde azaltılırken verimlilik, özellikle CO emisyonlarında% 100'e ulaştı.

Kaynakça

  • Abdel-Rahman A.A., 1998, On the emissions from internal-combustion engines: A review, International Journal of Energy Research, 22 (6), 483-513. doi: 10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-Z
  • Al-Hasan M., 2003, Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission, Energy Conversion and Management, 44 (9), 1547-1561. doi: 10.1016/S0196-8904(02)00166-8
  • Arce-Alejandro R., Villegas‑Alcaraz J.F., Gómez-Castro, F.I., Juárez-Trujillo L., Sánchez-Ramírez E., Carrera-Rodríguez M., Morales-Rodríguez R., 2018, Performance of a gasoline engine powered by a mixture of ethanol and n‑butanol, Clean Technologies and Environmental Policy, 20, 1929–1937. doi: 10.1007/s10098-018-1584-5
  • Ashok B., Ashok S.D., Kumar C.R., 2016, A review on control system architecture of a SI engine management system, Annual Reviews in Control, 41, 94-118. doi: 10.1016/j.arcontrol.2016.04.005
  • Badrawada I.G.G., Susastriawan A.A.P., 2019, Influence of ethanol–gasoline blend on performance and emission of four‑stroke spark ignition motorcycle, Clean Technologies and Environmental Policy, 21, 1891–1896. doi: 10.1007/s10098-019-01725-w Baskar P., Senthilkumar A., 2016, Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine, Int. J. Eng. Sci. Technol., 19 (1), 438-443. doi: 10.1016/j.jestch.2015.08.011
  • Bechtold R.L., 1997, Alternative Fuels Guidebook, Society of Automotive Engineers Inc., Warrendale.
  • Bhattacharyya S., Das R.K., 1999, Catalytic control of automotive NOx: A review, International Journal of Energy Research, 23 (4), 351-369. doi: 10.1002/(SICI)1099-114X(19990325)23:4<351::AID-ER497>3.0.CO;2-T
  • Çelikten İ., Karaaslan E., Solmaz H., Okur M., Polat S., 2015, Experimental investigation of the effects of gasoline additives on engine performance and exhaust emissions, Journal of Thermal Sciences and Technology, 35 (1), 87-95. (In Turkish)
  • Datta A., Mandal B.K., 2017, A numerical study on the performance, combustion and emission parameters of a compression ignition engine fuelled with diesel, palm stearin biodiesel and alcohol blends, Clean Technologies and Environmental Policy, 19, 157–173. doi: 10.1007/s10098-016-1202-3
  • Denton T., 2000, Automobile Electrical and Electronic Systems, Society of Automotive Engineers Inc., Warrendale.
  • Du B., Zhang L., Geng Y., Zhang Y., Xu H., Xiang G., 2020, Testing and evaluation of cold-start emissions in a real driving emissions test, Transportation Research Part D: Transport and Environment, 86, 102447. doi:10.1016/j.trd.2020.102447
  • Elfasakhany A., 2015, Investigations on the effects of ethanol-methanol-gasoline blends in a spark-ignition engine: Performance and emissions analysis, Int. J. Eng. Sci. Technol., 18 (4), 713-719 doi:10.1016/j.jestch.2015.05.003
  • Elfasakhany A., 2016, Performance and emissions of spark-ignition engine using ethanol–methanol–gasoline, n-butanol–iso-butanol–gasoline and iso-butanol–ethanol–gasoline blends: A comparative study, Int. J. Eng. Sci. Technol., 19 (4), 2053-2059. doi: 10.1016/j.jestch.2016.09.009
  • Favez, J.Y., Weilenmann M., Stilli J., 2009, Cold start extra emissions as a function of engine stop time: Evolution over the last 10 years, Atmospheric Environment, 43 (5), 996-1007. doi: 10.1016/j.atmosenv.2008.03.037
  • Gao J., Tian G., Sorniotti A., Karci A.E., Palo R.D., 2019, Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up, Applied Thermal Engineering, 147, 177-187. doi: 10.1016/j.applthermaleng.2018.10.037 Gong C., Huang K., Deng B., Liu X., 2011, Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start, Energy, 36 (1), 53-59. doi.org/10.1016/j.energy.2010.11.026
  • Gritsuk I.V., Mateichyk V., Tsiuman M., Gutarevych Y., Smieszek M., Goridko N., 2018, Reducing harmful emissions of the vehicular engine by rapid after-start heating of the catalytic converter using thermal accumulator, SAE Technical Paper, 2018-01-0784 ISSN 0148-7191. doi: 10.4271/2018-01-0784
  • Guerrieri D.A., Caffrey P.J., Rao V., 1995, Investigation into the vehicle exhaust emissions of high percentage ethanol blends, SAE Technical Paper, 950777 ISSN 0148-7191. doi: 10.4271/950777
  • He B.Q., Wang J.X., Hao J.M., Yan X.G., Xiao J.H., 2003, A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels, Atmospheric Environment, 37 (7), 949-957. doi: 10.1016/S1352-2310(02)00973-1
  • Heywood J.B., 1998, Internal Combustion Engine Fundamentals, McGraw-Hill Inc., New York.
  • Hochgreb S., 1998, Combustion-Related Emissions in SI Engines (Chapter 6) in: Sher E. (Ed.) Handbook of Air Pollution from Internal Combustion Engines Pollutant Formation and Control, Academic Press., pp. 118-170 Boston.
  • Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002, Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels, Atmospheric Environment, 36 (3), 403-410. doi.org/10.1016/S1352-2310(01)00508-8
  • Iodice P., Langella G., Amoresano A., 2018, Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions, Applied Thermal Engineering, 130, 1081-1089. doi: 10.1016/j.applthermaleng.2017.11.090
  • Jacob A., Ashok B., 2020, An interdisciplinary review on calibration strategies of engine management system for diverse alternative fuels in IC engine applications, Fuel, 278, 118236. doi.org/10.1016/j.fuel.2020.118236
  • Keskin A., Gürü M., 2011, The effects of ethanol and propanol additions into unleaded gasoline on exhaust and noise emissions of a spark ignition engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33 (23), 2194-2205. doi: 10.1080/15567030903530558
  • Kim J., Choi K., Myung C.L., Park S., 2013, Experimental evaluation of engine control strategy on the time resolved THC and nano-particle emission characteristics of liquid phase LPG direct injection (LPG-DI) engine during the cold start, Fuel Processing Technology, 106, 166-173. doi.org/10.1016/j.fuproc.2012.07.020
  • Koltsakis G.C., Stamatelos A.M., 1997, Catalytic automotive exhaust aftertreatment, Progress in Energy and Combustion Science, 23 (1), 1-39 doi:10.1016/S0360-1285(97)00003-8
  • Kwak H., Myung C.L., Park S., 2007, Experimental investigation on the time resolved THC emission characteristics of liquid phase LPG injection (LPLi) engine during cold start, Fuel, 86 (10-11), 1475-1482. doi.org/10.1016/j.fuel.2006.11.023
  • Mahadevan G., Subramanian S., 2017, Experimental Investigation of cold start emission using dynamic catalytic converter with pre-catalyst and hot air injector on a multi cylinder spark ignition engine, SAE Technical Paper, 2017-01-2367 ISSN 0148-7191. doi:10.4271/2017-01-2367
  • MGA 1500S Modular Gas Analyser, 2001, Operator’s Manual, Snap-on Europe Holding B.V., Amsterdam.
  • Mianzarasvand F., Shirneshan A., Afrand M., 2017, Effect of electrically heated catalytic converter on emission characteristic of a motorcycle engine in cold-start conditions: CFD simulation and kinetic study, Applied Thermal Engineering, 127, 453-464. doi.org/10.1016/j.applthermaleng.2017.07.180
  • Mills G.A., Ecklund E.E., 1987, Alcohols as components of transportation fuels, Ann. Rev. Energy, 12, 47-80.
  • Mondt J.R., 2000, Cleaner Cars: The History and Technology of Emission Control since the 1960s, Society of Automotive Engineers Inc., Warrendale.
  • Murachman B., Pranantyo D., Putra E.S., 2014, Study of gasohol as alternative fuel for gasoline substitution: Characteristics and performances, Int. Journal of Renewable Energy Development, 3 (3), 175-183. doi.org/10.14710/ijred.3.3.175-183
  • Murphy O.J., Kukreja R.T., Andrews C.C., 1999, Electrically initiated chemically heated catalytic converter to reduce cold-start emissions from automobiles, SAE Technical Paper, 1999-01-1233 ISSN 0148-7191. doi: 10.4271/1999-01-1233
  • Nabi M.N., Rasul M.G., Brown R.J., 2020, Notable reductions in blow-by and particle emissions during cold and hot start operations from a turbocharged diesel engine using oxygenated fuels, Fuel Processing Technology, 203, 106394 doi.org/10.1016/j.fuproc.2020.106394
  • Saha D., Sinha A., Roy B., 2020, A critical review of emission and performance characteristics of CI engine using bio‑additives, Clean Technologies and Environmental Policy, 22, 1613–1638. doi:10.1007/s10098-020-01918-8 Santos N.D.S.A., Alvarez C.E.C., Roso V.R., Baeta J.G.C., Valle R.M., 2021, Lambda load control in spark ignition engines, a new application of prechamber ignition systems, Energy Conversion and Management, 236, 114018. doi.org/10.1016/j.enconman.2021.114018
  • Saraswat M., Chauhan N.R., 2020, Comparative assessment of butanol and algae oil as alternate fuel for SI engines, Int. J. Eng. Sci. Technol., 23 (1), 92-100. doi:10.1016/j.jestch.2019.04.002
  • Schäfer F., Basshuysen R.V., 1995, Reduced Emissions and Fuel Consumption in Automotive Engines, Springer-Verlag Wien New York and Society of Automotive Engineers Inc., Warrendale.
  • Schifter I., Dı́az L., Vera M., Guzmán E., López-Salinas E., 2004, Fuel formulation and vehicle exhaust emissions in Mexico, Fuel, 83 (14-15), 2065-2074. doi.org/10.1016/j.fuel.2004.03.017
  • Shayler P.J., Chick J., Darnton N.J., Eade D., 1999, Generic functions for fuel consumption and engine-out emissions of HC, CO and NOx of spark-ignition engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213 (4), 365-378. doi:10.1243/0954407991526937
  • Shen H., Shamim T., Sengupta S., 1999, An investigation of catalytic converter performances during cold starts, SAE Technical Paper, 1999-01-3473 ISSN 0148-7191. doi:10.4271/1999-01-3473
  • Shenghua L., Clemente E.R.C., Tiegang H., Yanjv W., 2007, Study of spark ignition engine fueled with methanol/gasoline fuel blends, Applied Thermal Engineering, 27 (11-12), 1904-1910. doi:10.1016/j.applthermaleng.2006.12.024
  • Sivasubramanian H., Pochareddy Y.K., Dhamodaran G., Esakkimuthu G.S., 2017, Performance, emission and combustion characteristics of a branched higher mass, C3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine, Int. J. Eng. Sci. Technol., 20 (2), 528-535. doi:10.1016/j.jestch.2016.11.013
  • Speight J.G., 2011, Fuels for Fuel Cells (Chapter 3) in: Shekhawat D., Spivey J.J., Berry D.A. (Eds.) Fuel Cells: Technologies for Fuel Processing, Elsevier Science pp. 29–48. doi.org/10.1016/B978-0-444-53563-4.10003-3
  • Şimşek D., Oral F., Çolak N.Y., 2019, The effect on engine performance and emissions of gasoline-propanol-hexane fuel blends on single cylinder spark-ignition engines, Journal of Thermal Sciences and Technology, 39 (1), 81-89. (In Turkish)
  • Varol Y., Öner C., Öztop H.F., Altun Ş., 2014, Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36 (9), 938-948. doi:10.1080/15567036.2011.572141
  • Wu C.W., Chen R.H., Pu J.Y., Lin T.H., 2004, The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels, Atmospheric Environment, 38 (40), 7093-7100. doi.org/10.1016/j.atmosenv.2004.01.058
  • Yu S., Min K., 2002, Effects of the oil and liquid fuel film on hydrocarbon emissions in spark ignition engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216 (9), 759-771. doi: 10.1243/09544070260340853
  • Zhao H., Ge Y., Tan J., Yin H., Guo J., Zhao W., Dai P., 2011, Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends, Journal of Environmental Sciences, 23 (11), 1831-1838. doi: 10.1016/S1001-0742(10)60626-2

THE VARIATIONS OF THE EXHAUST EMISSIONS AT LOW AMBIENT TEMPERATURE FOR E10 AND M10 FUELED SI ENGINE

Yıl 2021, Cilt: 41 Sayı: 2, 227 - 237, 31.10.2021
https://doi.org/10.47480/isibted.1025931

Öz

Biomass fuels are important alternatives to conventional energy sources such as petroleum-based fuels. Biomass fuels especially alcohols have been used in passenger cars. Alcohol blends with gasoline constitute a general use. Particularly, modification of the engine is not required when using at low rates, like gasohol. Gasohol consists of a mixture of gasoline and especially ethanol, and it contains generally 10 percent alcohol. This study deals with the effect of the usage of low alcohol containing (10% ethanol or 10% methanol) blends on the exhaust emissions caused by an SI engine in the 600 seconds of the engine’s operating period from the cold start-up. According to the experimental results, the leaning effect of alcohol on the emissions is clearer in the initial 150 seconds of the experiments. The engine-out CO emissions decreased on average 34.5% for E10 fuel and 44.8% for M10 fuel compared to unleaded gasoline. Also, in the first 150 seconds, an average reduction of 23.2% E10 fuel and 25% M10 was observed in HC. When it comes to the engine-out NO, there were no significant differences by fuel type. Besides, in the study, the tailpipe emissions and converter efficiency were examined by heating the catalytic converter without changing other experimental conditions. Emissions were significantly reduced in all fuels, while efficiency reached 100%, especially for CO emissions.

Kaynakça

  • Abdel-Rahman A.A., 1998, On the emissions from internal-combustion engines: A review, International Journal of Energy Research, 22 (6), 483-513. doi: 10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-Z
  • Al-Hasan M., 2003, Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission, Energy Conversion and Management, 44 (9), 1547-1561. doi: 10.1016/S0196-8904(02)00166-8
  • Arce-Alejandro R., Villegas‑Alcaraz J.F., Gómez-Castro, F.I., Juárez-Trujillo L., Sánchez-Ramírez E., Carrera-Rodríguez M., Morales-Rodríguez R., 2018, Performance of a gasoline engine powered by a mixture of ethanol and n‑butanol, Clean Technologies and Environmental Policy, 20, 1929–1937. doi: 10.1007/s10098-018-1584-5
  • Ashok B., Ashok S.D., Kumar C.R., 2016, A review on control system architecture of a SI engine management system, Annual Reviews in Control, 41, 94-118. doi: 10.1016/j.arcontrol.2016.04.005
  • Badrawada I.G.G., Susastriawan A.A.P., 2019, Influence of ethanol–gasoline blend on performance and emission of four‑stroke spark ignition motorcycle, Clean Technologies and Environmental Policy, 21, 1891–1896. doi: 10.1007/s10098-019-01725-w Baskar P., Senthilkumar A., 2016, Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine, Int. J. Eng. Sci. Technol., 19 (1), 438-443. doi: 10.1016/j.jestch.2015.08.011
  • Bechtold R.L., 1997, Alternative Fuels Guidebook, Society of Automotive Engineers Inc., Warrendale.
  • Bhattacharyya S., Das R.K., 1999, Catalytic control of automotive NOx: A review, International Journal of Energy Research, 23 (4), 351-369. doi: 10.1002/(SICI)1099-114X(19990325)23:4<351::AID-ER497>3.0.CO;2-T
  • Çelikten İ., Karaaslan E., Solmaz H., Okur M., Polat S., 2015, Experimental investigation of the effects of gasoline additives on engine performance and exhaust emissions, Journal of Thermal Sciences and Technology, 35 (1), 87-95. (In Turkish)
  • Datta A., Mandal B.K., 2017, A numerical study on the performance, combustion and emission parameters of a compression ignition engine fuelled with diesel, palm stearin biodiesel and alcohol blends, Clean Technologies and Environmental Policy, 19, 157–173. doi: 10.1007/s10098-016-1202-3
  • Denton T., 2000, Automobile Electrical and Electronic Systems, Society of Automotive Engineers Inc., Warrendale.
  • Du B., Zhang L., Geng Y., Zhang Y., Xu H., Xiang G., 2020, Testing and evaluation of cold-start emissions in a real driving emissions test, Transportation Research Part D: Transport and Environment, 86, 102447. doi:10.1016/j.trd.2020.102447
  • Elfasakhany A., 2015, Investigations on the effects of ethanol-methanol-gasoline blends in a spark-ignition engine: Performance and emissions analysis, Int. J. Eng. Sci. Technol., 18 (4), 713-719 doi:10.1016/j.jestch.2015.05.003
  • Elfasakhany A., 2016, Performance and emissions of spark-ignition engine using ethanol–methanol–gasoline, n-butanol–iso-butanol–gasoline and iso-butanol–ethanol–gasoline blends: A comparative study, Int. J. Eng. Sci. Technol., 19 (4), 2053-2059. doi: 10.1016/j.jestch.2016.09.009
  • Favez, J.Y., Weilenmann M., Stilli J., 2009, Cold start extra emissions as a function of engine stop time: Evolution over the last 10 years, Atmospheric Environment, 43 (5), 996-1007. doi: 10.1016/j.atmosenv.2008.03.037
  • Gao J., Tian G., Sorniotti A., Karci A.E., Palo R.D., 2019, Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up, Applied Thermal Engineering, 147, 177-187. doi: 10.1016/j.applthermaleng.2018.10.037 Gong C., Huang K., Deng B., Liu X., 2011, Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start, Energy, 36 (1), 53-59. doi.org/10.1016/j.energy.2010.11.026
  • Gritsuk I.V., Mateichyk V., Tsiuman M., Gutarevych Y., Smieszek M., Goridko N., 2018, Reducing harmful emissions of the vehicular engine by rapid after-start heating of the catalytic converter using thermal accumulator, SAE Technical Paper, 2018-01-0784 ISSN 0148-7191. doi: 10.4271/2018-01-0784
  • Guerrieri D.A., Caffrey P.J., Rao V., 1995, Investigation into the vehicle exhaust emissions of high percentage ethanol blends, SAE Technical Paper, 950777 ISSN 0148-7191. doi: 10.4271/950777
  • He B.Q., Wang J.X., Hao J.M., Yan X.G., Xiao J.H., 2003, A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels, Atmospheric Environment, 37 (7), 949-957. doi: 10.1016/S1352-2310(02)00973-1
  • Heywood J.B., 1998, Internal Combustion Engine Fundamentals, McGraw-Hill Inc., New York.
  • Hochgreb S., 1998, Combustion-Related Emissions in SI Engines (Chapter 6) in: Sher E. (Ed.) Handbook of Air Pollution from Internal Combustion Engines Pollutant Formation and Control, Academic Press., pp. 118-170 Boston.
  • Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002, Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels, Atmospheric Environment, 36 (3), 403-410. doi.org/10.1016/S1352-2310(01)00508-8
  • Iodice P., Langella G., Amoresano A., 2018, Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions, Applied Thermal Engineering, 130, 1081-1089. doi: 10.1016/j.applthermaleng.2017.11.090
  • Jacob A., Ashok B., 2020, An interdisciplinary review on calibration strategies of engine management system for diverse alternative fuels in IC engine applications, Fuel, 278, 118236. doi.org/10.1016/j.fuel.2020.118236
  • Keskin A., Gürü M., 2011, The effects of ethanol and propanol additions into unleaded gasoline on exhaust and noise emissions of a spark ignition engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33 (23), 2194-2205. doi: 10.1080/15567030903530558
  • Kim J., Choi K., Myung C.L., Park S., 2013, Experimental evaluation of engine control strategy on the time resolved THC and nano-particle emission characteristics of liquid phase LPG direct injection (LPG-DI) engine during the cold start, Fuel Processing Technology, 106, 166-173. doi.org/10.1016/j.fuproc.2012.07.020
  • Koltsakis G.C., Stamatelos A.M., 1997, Catalytic automotive exhaust aftertreatment, Progress in Energy and Combustion Science, 23 (1), 1-39 doi:10.1016/S0360-1285(97)00003-8
  • Kwak H., Myung C.L., Park S., 2007, Experimental investigation on the time resolved THC emission characteristics of liquid phase LPG injection (LPLi) engine during cold start, Fuel, 86 (10-11), 1475-1482. doi.org/10.1016/j.fuel.2006.11.023
  • Mahadevan G., Subramanian S., 2017, Experimental Investigation of cold start emission using dynamic catalytic converter with pre-catalyst and hot air injector on a multi cylinder spark ignition engine, SAE Technical Paper, 2017-01-2367 ISSN 0148-7191. doi:10.4271/2017-01-2367
  • MGA 1500S Modular Gas Analyser, 2001, Operator’s Manual, Snap-on Europe Holding B.V., Amsterdam.
  • Mianzarasvand F., Shirneshan A., Afrand M., 2017, Effect of electrically heated catalytic converter on emission characteristic of a motorcycle engine in cold-start conditions: CFD simulation and kinetic study, Applied Thermal Engineering, 127, 453-464. doi.org/10.1016/j.applthermaleng.2017.07.180
  • Mills G.A., Ecklund E.E., 1987, Alcohols as components of transportation fuels, Ann. Rev. Energy, 12, 47-80.
  • Mondt J.R., 2000, Cleaner Cars: The History and Technology of Emission Control since the 1960s, Society of Automotive Engineers Inc., Warrendale.
  • Murachman B., Pranantyo D., Putra E.S., 2014, Study of gasohol as alternative fuel for gasoline substitution: Characteristics and performances, Int. Journal of Renewable Energy Development, 3 (3), 175-183. doi.org/10.14710/ijred.3.3.175-183
  • Murphy O.J., Kukreja R.T., Andrews C.C., 1999, Electrically initiated chemically heated catalytic converter to reduce cold-start emissions from automobiles, SAE Technical Paper, 1999-01-1233 ISSN 0148-7191. doi: 10.4271/1999-01-1233
  • Nabi M.N., Rasul M.G., Brown R.J., 2020, Notable reductions in blow-by and particle emissions during cold and hot start operations from a turbocharged diesel engine using oxygenated fuels, Fuel Processing Technology, 203, 106394 doi.org/10.1016/j.fuproc.2020.106394
  • Saha D., Sinha A., Roy B., 2020, A critical review of emission and performance characteristics of CI engine using bio‑additives, Clean Technologies and Environmental Policy, 22, 1613–1638. doi:10.1007/s10098-020-01918-8 Santos N.D.S.A., Alvarez C.E.C., Roso V.R., Baeta J.G.C., Valle R.M., 2021, Lambda load control in spark ignition engines, a new application of prechamber ignition systems, Energy Conversion and Management, 236, 114018. doi.org/10.1016/j.enconman.2021.114018
  • Saraswat M., Chauhan N.R., 2020, Comparative assessment of butanol and algae oil as alternate fuel for SI engines, Int. J. Eng. Sci. Technol., 23 (1), 92-100. doi:10.1016/j.jestch.2019.04.002
  • Schäfer F., Basshuysen R.V., 1995, Reduced Emissions and Fuel Consumption in Automotive Engines, Springer-Verlag Wien New York and Society of Automotive Engineers Inc., Warrendale.
  • Schifter I., Dı́az L., Vera M., Guzmán E., López-Salinas E., 2004, Fuel formulation and vehicle exhaust emissions in Mexico, Fuel, 83 (14-15), 2065-2074. doi.org/10.1016/j.fuel.2004.03.017
  • Shayler P.J., Chick J., Darnton N.J., Eade D., 1999, Generic functions for fuel consumption and engine-out emissions of HC, CO and NOx of spark-ignition engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213 (4), 365-378. doi:10.1243/0954407991526937
  • Shen H., Shamim T., Sengupta S., 1999, An investigation of catalytic converter performances during cold starts, SAE Technical Paper, 1999-01-3473 ISSN 0148-7191. doi:10.4271/1999-01-3473
  • Shenghua L., Clemente E.R.C., Tiegang H., Yanjv W., 2007, Study of spark ignition engine fueled with methanol/gasoline fuel blends, Applied Thermal Engineering, 27 (11-12), 1904-1910. doi:10.1016/j.applthermaleng.2006.12.024
  • Sivasubramanian H., Pochareddy Y.K., Dhamodaran G., Esakkimuthu G.S., 2017, Performance, emission and combustion characteristics of a branched higher mass, C3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine, Int. J. Eng. Sci. Technol., 20 (2), 528-535. doi:10.1016/j.jestch.2016.11.013
  • Speight J.G., 2011, Fuels for Fuel Cells (Chapter 3) in: Shekhawat D., Spivey J.J., Berry D.A. (Eds.) Fuel Cells: Technologies for Fuel Processing, Elsevier Science pp. 29–48. doi.org/10.1016/B978-0-444-53563-4.10003-3
  • Şimşek D., Oral F., Çolak N.Y., 2019, The effect on engine performance and emissions of gasoline-propanol-hexane fuel blends on single cylinder spark-ignition engines, Journal of Thermal Sciences and Technology, 39 (1), 81-89. (In Turkish)
  • Varol Y., Öner C., Öztop H.F., Altun Ş., 2014, Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36 (9), 938-948. doi:10.1080/15567036.2011.572141
  • Wu C.W., Chen R.H., Pu J.Y., Lin T.H., 2004, The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels, Atmospheric Environment, 38 (40), 7093-7100. doi.org/10.1016/j.atmosenv.2004.01.058
  • Yu S., Min K., 2002, Effects of the oil and liquid fuel film on hydrocarbon emissions in spark ignition engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 216 (9), 759-771. doi: 10.1243/09544070260340853
  • Zhao H., Ge Y., Tan J., Yin H., Guo J., Zhao W., Dai P., 2011, Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends, Journal of Environmental Sciences, 23 (11), 1831-1838. doi: 10.1016/S1001-0742(10)60626-2
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Tolga Topgül Bu kişi benim 0000-0003-1347-9594

Can Cınar Bu kişi benim 0000-0001-6944-8864

Onur Ozdemır Bu kişi benim 0000-0002-6475-1976

Yayımlanma Tarihi 31 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 41 Sayı: 2

Kaynak Göster

APA Topgül, T., Cınar, C., & Ozdemır, O. (2021). THE VARIATIONS OF THE EXHAUST EMISSIONS AT LOW AMBIENT TEMPERATURE FOR E10 AND M10 FUELED SI ENGINE. Isı Bilimi Ve Tekniği Dergisi, 41(2), 227-237. https://doi.org/10.47480/isibted.1025931