Research Article
BibTex RIS Cite

EXPLORING THE IMPACT OF GEOMETRIC PARAMETERS ON HEAT TRANSFER AND FLUID FLOW CHARACTERISTICS IN CROSS-TRIANGULAR GROOVED CHANNELS: A COMPUTATIONAL STUDY

Year 2024, Volume: 44 Issue: 1, 227 - 243, 03.06.2024
https://doi.org/10.47480/isibted.1494499

Abstract

In this study, the impact of geometric parameters of rectangular baffles with varying location angles and heights is investigated on the heat transfer and fluid flow characteristics of cross-triangular grooved channels. Computational methods are employed to explore these effects, utilizing the Ansys-Fluent program to solve the Navier-Stokes and energy equations, incorporating the k-ε turbulence model for numerical simulations. The inlet temperature of the air, serving as the working fluid, is set at 293 K, while the wall surface temperature of the lower triangular grooved channel remains fixed at 373 K. Rectangular baffles are tested with angles of 30°, 60°, and 90°, and heights of 0.25H, 0.5H, and 0.75H, respectively. The numerical results show good agreement with a 3.53% deviation compared to existing empirical data in the literature. The obtained findings are presented in terms of mean Nusselt (Num) number, fluid temperature, and Performance Evaluation Criterion (PEC) number variations taking into consideration of pressure drop for each rectangular baffle angle and height. Additionally, contour distributions of temperature and velocity are evaluated for different Reynolds numbers (Re) and arrangements of rectangular baffles. It has been determined that the Nu number value increases by 197.56% at a 90° angle and 0.75H height, compared to the 0.25H baffle height at Re=6000. Furthermore, at Re=1000, the PEC number is 84.50% higher with a baffle height of 0.25H and a baffle angle of 30° compared to the condition with a 90° angle.

References

  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid, Int. Comm. Heat Mass Transf. 101, 1–9, 2019.
  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. Experimental and numerical investigations of convection heat transfer in corrugated channels using alumina nanofluid under a turbulent flow regime, Chem. Eng. Res. Des. 148, 202-217, 2019.
  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels, Ad. Powder Technol. 30, 2262–2275, 2019.
  • Alnak D.E. Thermohydraulic performance study of different square baffle angles in cross-corrugated channel, Journal of Energy Storage, 28, 101295, 2020.
  • Aslan, E., Taymaz, I., Cakır, K., Eker Kahvecı, E. Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows, J. of Thermal Science and Technology 43 (2), 175-190, 2023.
  • Akbarzadeh, M., Rashidi, S., Esfahani, J. A. Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel, Appl. Therm. Eng. 1 (2017) 278–291.
  • Feng C.N., Liang C.H., Li Z.X. Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles, Energy&Buildings, 257, 111816, 2022.
  • FLUENT User's Guide, Fluent Inc. Lebanon, Netherland, 2003.
  • Guo-Yan Z., Shan-Tung T., Hu-Gen M. Numerical and experimental study on the heat transfer and pressure drop of compact cross-corrugated recuperators, J. Heat Transf. 136, 071801, 2014.
  • Karabulut, K. Investigation of heat transfer improvements of graphene oxide-water and diamond-water nanofluids in cross-flow-impinging jet flow channels having fin, J. of Thermal Science and Technology 43 (1), 11-30, 2023.
  • Karabulut K. Heat transfer increment study taking into consideration fin lengths for CuO-water nanofluid in cross flow-impinging jet flow channels, Thermal Science, 27 (6A), 4345-4360, (2023).
  • Karabulut, K., Alnak, Y. A study on microchip cooling performance increment by using air jet impingement with one and double rows. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0 (0), 2023.
  • Karabulut, K., Alnak, D.E. Study of cooling of the varied designed warmed surfaces with an air jet impingement, Pamukkale Univ. J. Eng. Sci. 26 (1), 88-98, 2020.
  • Karabulut, K. Heat transfer improvement study of electronic component surfaces using air jet impingement, J. Comput. Electron 18, 1259-1271, 2019.
  • Krishnan E.N., Ramin H., Guruabalan A., Simonson C.J. Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages, Int. Commun. Heat Mass Tran. 122, 105160, 2021.
  • Liang C.H., Feng C.N., Lei T.Y., Li Z.X. Numerical studies on the effect of the baffle on the heat transfer and flow in cross-corrugated triangular ducts, IOP Conf. Series: Earth and Environmental Science, 238, 012086, 2019.
  • Liu X.P., Niu J.L. Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels, Int. J. Heat Mass Tran. 84, 542–549, 2015.
  • Li Z.X., Zhong T.S., Niu J.L., Xiao F., Zhang L.Z. Conjugate heat and mass transfer in a total heat exchanger with cross-corrugated triangular ducts and one-step made asymmetric membranes, Int. J. Heat Mass Tran. 84, 390–400, 2015.
  • Li Z-X., Sun S-Q., Wang C., Liang C.H., Zeng S., Zhong T., Hu W-P., Feng C-N. The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct, Case Studies in Thermal Engineering 33, 101903, 2022.
  • Li Z., Gao Y. Numerical study of turbulent flow and heat transfer in cross-corrugated triangular ducts with delta-shaped baffles, Int. J. Heat Mass Transf. 108, 658–670, 2017.
  • Liang C.H., Feng C.N., Lei T.Y., Li Z.X. Numerical studies on the effect of baffle on the heat transfer and flow in cross-corrugated triangular ducts, IOP Conf. Series: Earth and Environmental Science, 238, 012086, 2019.
  • Muley A., Manglik R.M. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with Chevron plates, ASME J. Heat Transfer, 121, 110–117, 1999.
  • Saha S.K., Khan A.H. Numerical study on the effect of corrugation angle on thermal performance of cross corrugated plate heat exchangers, Therm. Sci. Eng. Prog. 20, 100711, 2020.
  • Saim R., Bouchenafa R., Benzenine H., Oztöp H.F., Al-Salem K., Abboudi S. A computational work on turbulent flow and heat transfer in a channel fitted with inclined baffles, Heat Mass Trans 49, 761–774, 2013.
  • Scott K., Lobato J. Mass transport in cross-corrugated membranes and influence of TiO2 for separation processes, Industrial&Engineering Chemistry Research, 42 (22), 5697-5701, 2003.
  • Wang S.J., Mujumdar A.S. A Comparative study of five low Reynolds number k-ε models for impingement heat transfer, Applied Thermal Engineering, 25, 31-44, 2005.
  • Welty, J., Rorrer, G.L., Foster, D.G. revised 6th edition, Fundamentals of Momentum, Heat, and Mass Transfer 768 Wiley, United States, 2014 ISBN: 978-1-118-94746-3.
  • Yıldızeli, A., Cadırcı, S. Numerical investıgatıon of plate coolıng using multiple impinging jets in different alignments, J. of Thermal Science and Technology 43 (1), 1-10, 2023.
  • Zhang L. Numerical study of periodically fully developed flow and heat transfer in cross-corrugated triangular channels in transitional flow regime, Numerical Heat Transfer Part A: Applications, 48 (4), 387-405, 2005.
  • Zhang L.Z. A reliability-based optimization of membrane-type total heat exchangers under uncertain design parameters, Energy, 101, 390-401, 2016.
  • Zhang L.Z. Turbulent three-dimensional air flow and heat transfer in a cross-corrugated triangular duct, J. Heat Tran. 127, 1151–1158, 2005.
  • Zhang L.Z. Numerical study of periodically fully developed flow and heat transfer in cross-corrugated triangular channels in transitional flow regime, Numer. Heat Tran. 48, 387–405, 2005.
  • Zhang L.Z., Chen Z.Y. Convective heat transfer in cross-corrugated triangular ducts under uniform heat flux boundary conditions, Int. J. Heat Mass Tran. 54, 597–605, 2011.
  • Zhang, L.Z. Convective mass transport in cross-corrugated membrane exchangers, Journal of Membrane Science 260, 75–83, 2005.
  • Zimmerer C., Gshwind P., Gaiser G., Kottke V. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls, Exp. Therm. Fluid Sci. 26, 269–273, 2002.

ÇAPRAZ ÜÇGEN YİVLİ KANALLARDA GEOMETRİK PARAMETRELERİN ISI TRANSFERİ VE AKIŞKAN AKIŞ ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİNİN ARAŞTIRILMASI: HESAPLAMALI BİR ÇALIŞMA

Year 2024, Volume: 44 Issue: 1, 227 - 243, 03.06.2024
https://doi.org/10.47480/isibted.1494499

Abstract

Bu çalışmada, konum açıları ve yükseklikleri değişen dikdörtgen engellerin geometrik parametrelerinin çapraz üçgen oluklu kanalların ısı transferi ve akışkan akışı özellikleri üzerindeki etkisi araştırılmaktadır. Bu etkileri keşfetmek için hesaplamalı yöntemler kullanılmış olup; Ansys-Fluent programı kullanılarak Navier-Stokes ve enerji denklemleri çözülmüş, sayısal simülasyonlar için k-ε türbülans modeli dahil edilmiştir. Çalışma akışkanı olarak kullanılan havanın giriş sıcaklığı 293 K iken, üçgen oluklu alt kanalın duvar yüzey sıcaklığı sabit 373 K olarak belirlenmiştir. Dikdörtgen engeller sırasıyla 30°, 60° ve 90° açılarında ve 0,25H, 0,5H ve 0.75H yüksekliklerinde test edilmiştir. Sayısal sonuçlar, literatürde mevcut olan deneysel verilere göre %3,53 sapma ile iyi bir uyum göstermektedir. Elde edilen bulgular, her bir dikdörtgen engel açısı ve yüksekliği için ortalama Nusselt (Num) sayısı, akışkan sıcaklığı ve basınç düşüşünü dikkate alan Performans Değerlendirme Kriteri (PEC) sayısı değişimleri açısından sunulmaktadır. Ayrıca, farklı Reynolds sayıları (Re) ve dikdörtgen engellerin düzenlemeleri için sıcaklık ve hız konturu dağılımları değerlendirilmektedir. Re=6000'de 0,25H engel yüksekliğine göre Nu sayısı değerinin 90° açı ve 0,75H yükseklikte %197,56 arttığı belirlenmiştir. Ayrıca, Re=1000'de, 0,25H engel yüksekliği ve 30° açısında, 90° açıdaki durumla karşılaştırıldığında PEC sayısı %84,50 daha yüksektir.

References

  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid, Int. Comm. Heat Mass Transf. 101, 1–9, 2019.
  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. Experimental and numerical investigations of convection heat transfer in corrugated channels using alumina nanofluid under a turbulent flow regime, Chem. Eng. Res. Des. 148, 202-217, 2019.
  • Ajeel R.K., Salim W.S.-I.W., Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels, Ad. Powder Technol. 30, 2262–2275, 2019.
  • Alnak D.E. Thermohydraulic performance study of different square baffle angles in cross-corrugated channel, Journal of Energy Storage, 28, 101295, 2020.
  • Aslan, E., Taymaz, I., Cakır, K., Eker Kahvecı, E. Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows, J. of Thermal Science and Technology 43 (2), 175-190, 2023.
  • Akbarzadeh, M., Rashidi, S., Esfahani, J. A. Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel, Appl. Therm. Eng. 1 (2017) 278–291.
  • Feng C.N., Liang C.H., Li Z.X. Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles, Energy&Buildings, 257, 111816, 2022.
  • FLUENT User's Guide, Fluent Inc. Lebanon, Netherland, 2003.
  • Guo-Yan Z., Shan-Tung T., Hu-Gen M. Numerical and experimental study on the heat transfer and pressure drop of compact cross-corrugated recuperators, J. Heat Transf. 136, 071801, 2014.
  • Karabulut, K. Investigation of heat transfer improvements of graphene oxide-water and diamond-water nanofluids in cross-flow-impinging jet flow channels having fin, J. of Thermal Science and Technology 43 (1), 11-30, 2023.
  • Karabulut K. Heat transfer increment study taking into consideration fin lengths for CuO-water nanofluid in cross flow-impinging jet flow channels, Thermal Science, 27 (6A), 4345-4360, (2023).
  • Karabulut, K., Alnak, Y. A study on microchip cooling performance increment by using air jet impingement with one and double rows. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0 (0), 2023.
  • Karabulut, K., Alnak, D.E. Study of cooling of the varied designed warmed surfaces with an air jet impingement, Pamukkale Univ. J. Eng. Sci. 26 (1), 88-98, 2020.
  • Karabulut, K. Heat transfer improvement study of electronic component surfaces using air jet impingement, J. Comput. Electron 18, 1259-1271, 2019.
  • Krishnan E.N., Ramin H., Guruabalan A., Simonson C.J. Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages, Int. Commun. Heat Mass Tran. 122, 105160, 2021.
  • Liang C.H., Feng C.N., Lei T.Y., Li Z.X. Numerical studies on the effect of the baffle on the heat transfer and flow in cross-corrugated triangular ducts, IOP Conf. Series: Earth and Environmental Science, 238, 012086, 2019.
  • Liu X.P., Niu J.L. Effects of geometrical parameters on the thermohydraulic characteristics of periodic cross-corrugated channels, Int. J. Heat Mass Tran. 84, 542–549, 2015.
  • Li Z.X., Zhong T.S., Niu J.L., Xiao F., Zhang L.Z. Conjugate heat and mass transfer in a total heat exchanger with cross-corrugated triangular ducts and one-step made asymmetric membranes, Int. J. Heat Mass Tran. 84, 390–400, 2015.
  • Li Z-X., Sun S-Q., Wang C., Liang C.H., Zeng S., Zhong T., Hu W-P., Feng C-N. The effect of trapezoidal baffles on heat and flow characteristics of a cross-corrugated triangular duct, Case Studies in Thermal Engineering 33, 101903, 2022.
  • Li Z., Gao Y. Numerical study of turbulent flow and heat transfer in cross-corrugated triangular ducts with delta-shaped baffles, Int. J. Heat Mass Transf. 108, 658–670, 2017.
  • Liang C.H., Feng C.N., Lei T.Y., Li Z.X. Numerical studies on the effect of baffle on the heat transfer and flow in cross-corrugated triangular ducts, IOP Conf. Series: Earth and Environmental Science, 238, 012086, 2019.
  • Muley A., Manglik R.M. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with Chevron plates, ASME J. Heat Transfer, 121, 110–117, 1999.
  • Saha S.K., Khan A.H. Numerical study on the effect of corrugation angle on thermal performance of cross corrugated plate heat exchangers, Therm. Sci. Eng. Prog. 20, 100711, 2020.
  • Saim R., Bouchenafa R., Benzenine H., Oztöp H.F., Al-Salem K., Abboudi S. A computational work on turbulent flow and heat transfer in a channel fitted with inclined baffles, Heat Mass Trans 49, 761–774, 2013.
  • Scott K., Lobato J. Mass transport in cross-corrugated membranes and influence of TiO2 for separation processes, Industrial&Engineering Chemistry Research, 42 (22), 5697-5701, 2003.
  • Wang S.J., Mujumdar A.S. A Comparative study of five low Reynolds number k-ε models for impingement heat transfer, Applied Thermal Engineering, 25, 31-44, 2005.
  • Welty, J., Rorrer, G.L., Foster, D.G. revised 6th edition, Fundamentals of Momentum, Heat, and Mass Transfer 768 Wiley, United States, 2014 ISBN: 978-1-118-94746-3.
  • Yıldızeli, A., Cadırcı, S. Numerical investıgatıon of plate coolıng using multiple impinging jets in different alignments, J. of Thermal Science and Technology 43 (1), 1-10, 2023.
  • Zhang L. Numerical study of periodically fully developed flow and heat transfer in cross-corrugated triangular channels in transitional flow regime, Numerical Heat Transfer Part A: Applications, 48 (4), 387-405, 2005.
  • Zhang L.Z. A reliability-based optimization of membrane-type total heat exchangers under uncertain design parameters, Energy, 101, 390-401, 2016.
  • Zhang L.Z. Turbulent three-dimensional air flow and heat transfer in a cross-corrugated triangular duct, J. Heat Tran. 127, 1151–1158, 2005.
  • Zhang L.Z. Numerical study of periodically fully developed flow and heat transfer in cross-corrugated triangular channels in transitional flow regime, Numer. Heat Tran. 48, 387–405, 2005.
  • Zhang L.Z., Chen Z.Y. Convective heat transfer in cross-corrugated triangular ducts under uniform heat flux boundary conditions, Int. J. Heat Mass Tran. 54, 597–605, 2011.
  • Zhang, L.Z. Convective mass transport in cross-corrugated membrane exchangers, Journal of Membrane Science 260, 75–83, 2005.
  • Zimmerer C., Gshwind P., Gaiser G., Kottke V. Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls, Exp. Therm. Fluid Sci. 26, 269–273, 2002.
There are 35 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Yeliz Alnak 0000-0003-4383-3806

Publication Date June 3, 2024
Submission Date February 15, 2024
Acceptance Date April 6, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

APA Alnak, Y. (2024). EXPLORING THE IMPACT OF GEOMETRIC PARAMETERS ON HEAT TRANSFER AND FLUID FLOW CHARACTERISTICS IN CROSS-TRIANGULAR GROOVED CHANNELS: A COMPUTATIONAL STUDY. Isı Bilimi Ve Tekniği Dergisi, 44(1), 227-243. https://doi.org/10.47480/isibted.1494499