Research Article
BibTex RIS Cite

INVESTIGATION OF FLOW AND HEAT TRANSFER PERFORMANCE OF GYROID STRUCTURE AS POROUS MEDIA

Year 2024, Volume: 44 Issue: 2, 351 - 358, 01.11.2024
https://doi.org/10.47480/isibted.1471713

Abstract

There are active and passive methods used to improve heat transfer. One of the passive methods is utilising porous media with high heat transfer surface area. Porous media are divided into two groups: regular and irregular structures. One of the regular structures is triply periodic minimal surfaces (TPMS), which have been studied quite frequently recently. In this study, heat transfer and flow analysis of a Gyroid geometry, one of the most used TPMS in the literature, is investigated numerically considering the conjugate heat transfer conditions. A single porosity is considered (ε = 0.6), and aluminium, ceramic and PLA are selected for the heat exchanger material to examine the temperature change in the heat exchanger. To understand the different flow characteristics, Reynolds numbers (Reh) are assumed to be 19.12, 95.61 and 172.09. The fluid inlet temperature is assumed to be constant at 298.15 K, and the initial temperature of the heat exchanger is assumed to be constant at 278.15 K to be consistent with the regenerative heat recovery temperature difference in ventilation standards. Nu numbers under different operating conditions are compared, and it is the ceramic material with low thermal diffusivity is at the highest level despite its low thermal conductivity. At the highest Re number, it provided approximately 6% better heat transfer than the aluminium heat exchanger.

Thanks

I would like to thank Bosch Thermotechnology company for the workstation infrastructure it provided.

References

  • Alteneiji, M., Ali, M. I. H., Khan, K. A., & Al-Rub, R. K. A. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers, Energy Storage and Saving, Volume 1, Issue 3, 2022.
  • Barakat, A., & Sun, B. (2024). Enhanced convective heat transfer in new triply periodic minimal surface structures: Numerical and experimental investigation. International Journal of Heat and Mass Transfer, 227, 125538.
  • Dharmalingam, L.K.; Aute, V.; Ling, J. Review of Triply Periodic Minimal Surface (TPMS) based Heat Exchanger Designs. In Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 10–14 July 2022.
  • Femmer, T., Kuehne, A. J., & Wessling, M. (2015). Estimation of the structure dependent performance of 3-D rapid prototyped membranes. Chemical Engineering Journal, 273, 438-445.
  • Fu, Y., Bao, J., Wang, C., Singh, R. K., Xu, Z., &Panagakos, G. (2019). CFD Study of Countercurrent Flow in Triply Periodic Minimal Surfaces withCO2BOL Solvent (No. PNNL-29590). Pacific Northwest National Lab. (PNNL), Richland, WA (United States).
  • Genç, A.M.; Vatansever, C.; Koçak, M.; Karadeniz, Z.H. Investigation of Additively Manufactured Triply Periodic Minimal Surfaces as an Air-to-Air Heat Exchanger. In Proceedings of the REHVA 14th HVACWord Congress, Rotterdam, The Netherlands, 22–25 May 2022.
  • https://github.com/metudust/RegionTPMS
  • Iyer, J., Moore, T., Nguyen, D., Roy, P., & Stolaroff, J. (2022). Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces. Applied Thermal Engineering, 209, 118192.
  • Kaur, I., & Singh, P. (2021). Flow and thermal transport characteristics of Triply-Periodic Minimal Surface (TPMS)-based gyroid and Schwarz-P cellular materials. Numerical Heat Transfer, Part A: Applications, 79(8), 553-569.
  • Neovius E.R., Bestimmung Zweier Spezieller Periodischer Minimalflachen, Akad. Abhandlungen, Helsinki, Finland, 1883.
  • Peng, H., Gao, F., & Hu, W. (2019). Design, modeling and characterization on triply periodic minimal surface heat exchangers with additive manufacturing.
  • Qian, C., Wang, J., Zhong, H., Qiu, X., Yu, B., Shi, J., & Chen, J. (2024). Experimental investigation on heat transfer characteristics of copper heat exchangers based on triply periodic minimal surfaces (TPMS). International Communications in Heat and Mass Transfer, 152, 107292.
  • Rathore, S. S., Mehta, B., Kumar, P., & Asfer, M. (2023). Flow characterization in triply periodic minimal surface (TPMS)-based porous geometries: Part 1—Hydrodynamics. Transport in Porous Media, 146(3), 669-701.
  • Reynolds, B. W., Fee, C. J., Morison, K. R., & Holland, D. J. (2023). Characterisation of heat transfer within 3D printed TPMS heat exchangers. International Journal of Heat and Mass Transfer, 212, 124264.
  • Reynolds, B.W. Simulation of Flow and Heat Transfer in 3D Printable Triply Periodic Minimal Surface Heat Exchangers; University of Canterbury: Christchurch, New Zealand, 2020.
  • Schoen A. H., Infinite periyodik minimal surfaces without selfintersections, NASA Technical Note No. D-5541, NASA, 1970.
  • Schwarz H.A., Ueber ein Modell eines Minimalflachenst€uckes, welches langs seiner Begrenzung vier gegebene Ebenen rechtwinklig trifft. In: Gesammelte Mathematische Abhandlungen, Springer, Berlin, Heidelberg, pp. 149–150, 1890.
  • Sundén, B., & Faghri, M. (Eds.). (2005). Modelling and Simulation of Turbulent Heat Transfer (Vol. 15). WIT press.
  • Tang, W., Zhou, H., Zeng, Y., Yan, M., Jiang, C., Yang, P., ... & Zhao, Y. (2023). Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. International Journal of Heat and Mass Transfer, 201, 123642.
  • Xu, H. J., Gong, L., Zhao, C. Y., Yang, Y. H., & Xu, Z. G. (2015). Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams. International Journal of Thermal Sciences, 95, 73-87.

GYROID YAPISININ GÖZENEKLİ ORTAM OLARAK AKIŞ VE ISI TRANSFER PERFORMANSININ İNCELENMESİ

Year 2024, Volume: 44 Issue: 2, 351 - 358, 01.11.2024
https://doi.org/10.47480/isibted.1471713

Abstract

Isı transferini iyileştirmek için aktif ve pasif yöntemler kullanılmaktadır. Pasif yöntemlerden biri yüksek ısı transfer yüzey alanına sahip gözenekli ortamlardır. Gözenekli ortamlar düzenli ve düzensiz yapılar olmak üzere iki gruba ayrılır. Düzenli yapılardan biri de son zamanlarda oldukça sık incelenen üç yönlü periyodik minimal yüzeylerdir (ÜYPMY). Bu çalışmada, literatürde en çok kullanılan ÜYPMY'lerden biri olan Gyroid geometrisinin ısı transferi ve akış analizi, eşlenik ısı transferi koşulları dikkate alınarak sayısal olarak incelenmiştir. Tek bir gözeneklilik dikkate alınmış (ε = 0,6) ve ısı değiştiricideki sıcaklık değişimini incelemek için ısı değiştirici malzemesi olarak alüminyum, seramik ve PLA seçilmiştir. Farklı akış koşullarını değerlendirebilmek için Reynolds sayıları (Reh) 19,12 - 95,61 ve 172,09 olarak kabul edilmiştir. Akışkan giriş sıcaklığının 298,15 K'da sabit olduğu, ısı değiştiricinin başlangıç sıcaklığının ise havalandırma standartlarındaki rejeneratif ısı geri kazanım sıcaklık farkıyla tutarlı olması için 278,15 K'de sabit olduğu varsayılmıştır. Farklı çalışma koşullarındaki Nu sayıları karşılaştırıldığında, düşük ısıl iletkenliğine rağmen düşük ısıl yayılımı en yüksek seviyede olan seramik malzemedir. En yüksek Re sayısında alüminyum eşanjöre göre yaklaşık %6 daha iyi ısı transferi sağlamıştır.

References

  • Alteneiji, M., Ali, M. I. H., Khan, K. A., & Al-Rub, R. K. A. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers, Energy Storage and Saving, Volume 1, Issue 3, 2022.
  • Barakat, A., & Sun, B. (2024). Enhanced convective heat transfer in new triply periodic minimal surface structures: Numerical and experimental investigation. International Journal of Heat and Mass Transfer, 227, 125538.
  • Dharmalingam, L.K.; Aute, V.; Ling, J. Review of Triply Periodic Minimal Surface (TPMS) based Heat Exchanger Designs. In Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, IN, USA, 10–14 July 2022.
  • Femmer, T., Kuehne, A. J., & Wessling, M. (2015). Estimation of the structure dependent performance of 3-D rapid prototyped membranes. Chemical Engineering Journal, 273, 438-445.
  • Fu, Y., Bao, J., Wang, C., Singh, R. K., Xu, Z., &Panagakos, G. (2019). CFD Study of Countercurrent Flow in Triply Periodic Minimal Surfaces withCO2BOL Solvent (No. PNNL-29590). Pacific Northwest National Lab. (PNNL), Richland, WA (United States).
  • Genç, A.M.; Vatansever, C.; Koçak, M.; Karadeniz, Z.H. Investigation of Additively Manufactured Triply Periodic Minimal Surfaces as an Air-to-Air Heat Exchanger. In Proceedings of the REHVA 14th HVACWord Congress, Rotterdam, The Netherlands, 22–25 May 2022.
  • https://github.com/metudust/RegionTPMS
  • Iyer, J., Moore, T., Nguyen, D., Roy, P., & Stolaroff, J. (2022). Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces. Applied Thermal Engineering, 209, 118192.
  • Kaur, I., & Singh, P. (2021). Flow and thermal transport characteristics of Triply-Periodic Minimal Surface (TPMS)-based gyroid and Schwarz-P cellular materials. Numerical Heat Transfer, Part A: Applications, 79(8), 553-569.
  • Neovius E.R., Bestimmung Zweier Spezieller Periodischer Minimalflachen, Akad. Abhandlungen, Helsinki, Finland, 1883.
  • Peng, H., Gao, F., & Hu, W. (2019). Design, modeling and characterization on triply periodic minimal surface heat exchangers with additive manufacturing.
  • Qian, C., Wang, J., Zhong, H., Qiu, X., Yu, B., Shi, J., & Chen, J. (2024). Experimental investigation on heat transfer characteristics of copper heat exchangers based on triply periodic minimal surfaces (TPMS). International Communications in Heat and Mass Transfer, 152, 107292.
  • Rathore, S. S., Mehta, B., Kumar, P., & Asfer, M. (2023). Flow characterization in triply periodic minimal surface (TPMS)-based porous geometries: Part 1—Hydrodynamics. Transport in Porous Media, 146(3), 669-701.
  • Reynolds, B. W., Fee, C. J., Morison, K. R., & Holland, D. J. (2023). Characterisation of heat transfer within 3D printed TPMS heat exchangers. International Journal of Heat and Mass Transfer, 212, 124264.
  • Reynolds, B.W. Simulation of Flow and Heat Transfer in 3D Printable Triply Periodic Minimal Surface Heat Exchangers; University of Canterbury: Christchurch, New Zealand, 2020.
  • Schoen A. H., Infinite periyodik minimal surfaces without selfintersections, NASA Technical Note No. D-5541, NASA, 1970.
  • Schwarz H.A., Ueber ein Modell eines Minimalflachenst€uckes, welches langs seiner Begrenzung vier gegebene Ebenen rechtwinklig trifft. In: Gesammelte Mathematische Abhandlungen, Springer, Berlin, Heidelberg, pp. 149–150, 1890.
  • Sundén, B., & Faghri, M. (Eds.). (2005). Modelling and Simulation of Turbulent Heat Transfer (Vol. 15). WIT press.
  • Tang, W., Zhou, H., Zeng, Y., Yan, M., Jiang, C., Yang, P., ... & Zhao, Y. (2023). Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp. International Journal of Heat and Mass Transfer, 201, 123642.
  • Xu, H. J., Gong, L., Zhao, C. Y., Yang, Y. H., & Xu, Z. G. (2015). Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams. International Journal of Thermal Sciences, 95, 73-87.
There are 20 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Alper Mete Genc 0000-0002-1290-9962

Z. Haktan Karadeniz 0000-0001-7850-7942

Publication Date November 1, 2024
Submission Date April 22, 2024
Acceptance Date August 20, 2024
Published in Issue Year 2024 Volume: 44 Issue: 2

Cite

APA Genc, A. M., & Karadeniz, Z. H. (2024). INVESTIGATION OF FLOW AND HEAT TRANSFER PERFORMANCE OF GYROID STRUCTURE AS POROUS MEDIA. Isı Bilimi Ve Tekniği Dergisi, 44(2), 351-358. https://doi.org/10.47480/isibted.1471713