Araştırma Makalesi
BibTex RIS Kaynak Göster

PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis

Yıl 2024, Cilt: 44 Sayı: 2, 359 - 373, 01.11.2024
https://doi.org/10.47480/isibted.1477069

Öz

Electricity and thermal energy are used extensively in residential buildings. Meeting these needs with different systems cause loss of efficiency, and an increase initial investment cost which are critical when making investment decisions. Therefore, photovoltaic thermal (PV/T) systems are used to reduce the economic burden of home users. In this article, it is aimed to determine the performance of the PV/T system and to make an economic analysis by considering the instantaneous electrical and thermal efficiency. Net present value (NPV), payback period (PBP) and levelized cost of energy (LCOE) values were used to evaluate the system economically. The novelty of this study is the efficiency of the PV/T collectors, the ambient temperature as well as the main water temperature was taken into consideration and the heat and electrical energy to be produced were calculated by taking the efficiency values calculated on an hourly basis. Also, the losses and the annual degradation of the entire system are included in the calculation. As a result of the analyses, the LCOE, NPV, PBP, average electrical and thermal efficiencies were found as 0.0911 €/kWh, 2718.5 €, 6 years, 14.7% and 62.3%, respectively, for a project size of 8.96 m2 in a 25-year life cycle.

Kaynakça

  • Wolf, M. (1976). Performance analysis of combined heating and photovoltaic power systems for residences. Energy Conversation 16(1),79–90.
  • Boer, K.W. (2003). Tamm G. Solar conversion under consideration of energy and entropy. Solar Energy 74(1), 525–8.
  • Florschuetz, L.W. (1979). Extension of the Hottel–Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy, 22(1), 361–6.
  • Hendrie, S.D. (1982). Photocoltaic/Thermal Collector Development Program-Final Report. The U.S. Department of Energy Under Contract NO DE-AC02-76ET20279
  • Cox, C.H. (1985). Raghuraman P. Desig.n considerations for flat-plate photovoltaic/thermal collectors. Solar Energy, 35(3),227–41.
  • Suzuki, A. Kitamura, S. (1979). Combined photovoltaic and thermal hybrid collector. Japan J Phys, 19(2), 79–83.
  • Karl, H. (1979). Photovoltaischer Hybridkollektor. In: Fourth international congress laser, 79 opto-electronics, Munchen.
  • Komp, R.J. (1985). Field experience and performance evaluation of a novel photovoltaic-thermal hybrid solar energy collector. Intersol, 85.
  • Schwartz, R. Rao, K.H.S. Tscharner, R. (1983). Computer-aided analysis of thermal images of solar cells and solar PV/T collectors. In: Fifth EPSEC, Athens.
  • Lalovic, B. Kiss, Z. Weakliem, H. (1986). A hybrid amorphous silicon photovoltaic and thermal solar collector. Solar Cells, 19(1), 131–8.
  • Lalovic, B. Pavlovic, T. Kiss, Z. Dine, J. (1988). The application of hybrid a-Si:H PV and thermal collectors for different usages. In: Eighth EPSEC.
  • Zondag, H.A. Vries, D.W. Helden, W.G.J. Zolingen, R.J.C. Steenhoven, A.A. (2003). The yield of different combined PV-thermal collector designs. Solar Energy, 74(1), 253–69.
  • Leenders, F. Schaap, A.B. Ree, B.C.G. Helden, W.G.J. (2000). Technology review on PV/Thermal concepts. In: 16th EPSEC, Glasgow.
  • Bakker, M. Zondag, H.A. Helden, W.G.J. (2002). Design of a dual flow photovoltaic/thermal combi panel. In: PV in Europe, Rome.
  • Bakker, M. Zondag, H.A. Elswijk, M.J. Ottenbros, M.T.N. Helden, W.G.J. (2004). Outdoor performance of uncovered PV/Thermal panels. In: 19th EPSEC, Paris.
  • Rockendorf, G. Sillmann, R. Podlowski, L. Litzenburger, B. (1999). PV-hybrid and thermo-electric collectors. Solar Energy, 67(4–6), 227–37.
  • Hausler, T. Rogass, H. (2000). Latent heat storage on photovoltaics. In: 16th EPSEC, Glasgow.
  • Soerensen, B. (2001). Modelling of hybrid PV-thermal systems. In: 17th EPSEC, Munich.
  • Tripanagnostopoulos, Y. Nousia, T.H. Souliotis, M. Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217–34.
  • Tselepis, S. Tripanagnostopoulos, Y. (2002). Economic analysis of hybrid photovoltaic/thermal solar systems and comparison with standard PV modules. In: PV in Europe, Rome.
  • Kalogirou, S.A. (2001). Use of TRNSYS for modelling and simulation of a hybrid PV-thermal solar system for Cyprus. Renewable Energy, 23(1), 247–60.
  • Bergene, T. Løvvik, O.M. (1995). Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol Energy, 55(6), 453–62.
  • Meir, M.G. Rekstad, J.B. Løvvik, OM. (2002). A study of a polymer-based radiative cooling system. Solar Energy, 73(6), 403–17.
  • Sandnes, B. Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy, 72(1), 63–73.
  • Hayakashi, B. Muzusaki, K. Satoh, T. Hatanaka, T. (1989). Research and development of photovoltaic/thermal hybrid solar power generation system. In: ISES Solar World Congress, Kobe.
  • Fujisawa, T. Tani, T. (1997). Binary utilization of solar energy with photovoltaic-thermal hybrid collector. In: ISES Solar World Congress, Korea.
  • Ito, S. Miura, N. Wang, K. (1999). Performance of a heat pump using direct expansion solar collectors. Solar Energy, 65(3), 189–96.
  • Huang, B.J. Lin, T.H. Hung, W.C. Sun, F.S. (1999). Solar photo-voltaic/thermal co-generation collector. In: ISES Solar World Congress, Jerusalem.
  • Huang, B.J. Lin, T.H. Hung, W.C. (2001). Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70(5), 443–8.
  • Garg, H.P. Agarwal, R.K. (1995). Some aspects of a PV/T collector/forced circulation flat plate solar water haeter with solar cells. Energy Conversation and Management, 36(2),87–99.
  • Thomas, H.P. Hayter, S.J. Martin, R.L. Pierce, L.K. (2000). PV and PV/hybrid products for buildings. In: 16th EPSEC, Glasgow.
  • Krauter, S. Araujo, G. Schroer, S. Hanitsch, R. Salhi, M.J. Triebel, C. (1999). Combined photovoltaic and solar thermal systems for fac-ade integration and building insulation. Solar Energy, 67(4–6), 239–48.
  • Krauter, S. Salhi, M.J. Schroer, S. Hanitsch, R. (2001). New fac-ade system consisting of combined photovoltaic and solar thermal generators with building insulation. In: Seventh IBPSA, Rio de Janeiro, Brazil.
  • Jai, P. (1994). Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management, 35(11), 967-972.
  • Kim, J. (2012). Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors. International Journal of Photoenergy, 1(4), 7.
  • Aste, N. Leonforte, F. Pero, C. (2015). Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 112(2), 85–99.
  • JieJia, H. Tin-tai, C. Hua, Y. Jianping, L. WeiHe, S. (2006). Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings, 38(12), 1380-1387.
  • Saitoh, H. Hamada, Y. Kubota, H. Nakamura, M. Ochifuji, K. Yokoyama, S. (2003). Field experiments and analyses on a hybrid solar collector. Applied Thermal Engineering, 23(16), 2089–105.
  • Minglu, Q. Jianbo, C. Linjie, N. Fengshu, L. Qian, Y. (2016). Experimental study on the operating characteristics of a novel photovoltaic/thermal integrated dual-source heat pump water heating system. Applied Thermal Engineering, 94(2), 819–82.
  • Niccolò, A. Claudio, P. Fabrizio, L. Massimiliano, M. (2016). Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector. Solar Energy, 135(1), 551–568.
  • Fudholi, A. Sopian, K. Yazdi, M.H. Ruslan, M.H. Ibrahim, A. Kazem, H.A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78(1), 641–651.
  • Ibrahim, A. Fudholi, A. Sopian, K. Othman, M.Y. Ruslan, M.H. (2014). Efficiencies and improvement potential of building integrated PV thermal (BIPVT) system. Energy Conversion and Management, 77(1), 527–34.
  • Kiran, S. Devadiga, U. (2014). Performance analysis of hybrid PV/Thermal systems. Int J Emerg Technol Adv Eng, 4(3),80–6.
  • Alzaabi, A.A. Badawiyeh, N.K. Hantoush, H.O. Hamid, A.K. (2014). Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. International. J Smart Grid Clean Energy, 3(2), 385–9.
  • Rosa-Clot, M. Rosa-Clot, P. Tina, G.M. Ventura, C. (2016). Experimental PV-thermal power plants based on TESPI panel. Solar Energy, 133(1), 305–14.
  • Yazdanifard, F. Ebrahimnia-Bajestan, E. Ameri, M. (2016). Investigating the performance of a water-based PV/thermal (PV/T) collector in laminar and turbulent flow regime. Renewable Energy, 99(1), 295–306.
  • Daghigh, R. Ibrahim, A. Jina, G.L. Ruslan, M.H. Sopian, K. (2011). Predicting the performance of amorphous and crystalline silicon based PV solar thermal collectors. Energy Conversation and Management, 52(3), 1741–7.
  • Herrando, M. Markides, C.N. Hellgardt, K. (2014). A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Applied Energy, 122(1), 288–309.
  • Madalina, B. Monica, S. George, D. (2023). Performance Analysis and Comparison of an Experimental Hybrid PV, PVT and Solar Thermal System Installed in a Preschool in Bucharest, Romania. Energies, 16(14), 5321.
  • Kegui, L. Qiongwan, Y. Bin, Z. Gang, P. (2023). Performance analysis of a novel PV/T hybrid system based on spectral beam splitting, Renewable Energy, 207(5), 398-406.
  • Dongxing, S. Wenbo, T. Bo, A. Ke, W. (2024). Twofold spectrum split enabling spectral selectivity tailoring and deep temperature decoupling for high exergy efficiency in a concentrating photovoltaic/thermal (PV/T) system, Energy Conversion and Management, 303(3), 118153.
  • Siyan, C. Bin, Z. Qiongwan, Y. Ken, C. Kongfu, H. Gang, P. (2024). Seasonal heat regulation in photovoltaic/thermal collectors with switchable backplate technology: Experiments and simulations, Renewable Energy, 224(4), 120139.
  • Buker, M.S. Mempouo, B. Riffat, S.B. (2014). Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation. Energy and Buildings, 76(1), 164–75.
  • Riggs, B.C. Biedenharnb, R. Dougher, C. (2017). Techno-economic analysis of hybrid PV/T systems for process heat using electricity to subsidize the cost of heat. Applied Energy, 208(1), 1370–8.
  • Wilson, R. Young, A. (1996). The embodied energy PP of photovoltaic installations applied to buildings in the UK. Building and Environment, 31(4), 299–305.
  • Zhang, X. Shen, J. Adkins, D. (2015). The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates. Energy Conversation and Management, 106(1), 964–86.
  • Michael, J.J. Selvarasan, I. (2017). Economic analysis and environmental impact of flat plate roof mounted solar energy systems. Solar Energy, 142(3), 159–70.
  • Coventry, J.S. Lovegrove, K. (2003). Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic Pv/thermal system. Solar Energy, 75(5), 63–72.
  • Tripanagnostopoulos, Y. Souliotis, M. Battisti, R. Corrado, A. (2005). Energy, cost and LCA results of PV and hybrid PVT solar systems. Progress Photovoltaics, 13(3), 235–250.
  • Kalogirou, S.A.,Tripanagnostopoulos, Y. (2007). Industrial application of PVT solar energy systems. Appl. Therm. Eng. 27(8–9), 1259–1270.
  • Mishra, R.K. Tiwari, G.N. (2013). Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Solar Energy, 91(1), 161–173.
  • Mahmut, S.B. Blaise, M. Saffa, B.R. (2014). Performance evaluation and techno-economic analysis of a novelbuilding integrated PV/T roof collector: An experimental validation. Energy and Buildings, 76(2), 164–175.
  • Ka-Kui, Tse. Tin-Tai, C. Yan, S. (2016). Performance evaluation and economic analysis of a full scalewater-based photovoltaic/thermal (PV/T) system in an office building. Energy and Buildings, 122(1), 42–52.
  • Alba, R. Maria, A.C. Ilaria, G. James, F. Christos, N.M. (2017). Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Conversion and Management, 150(2), 838–850.
  • Augusto, B. Alessandro, G. Marco, P. Cesare, S. (2017). Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment. Renewable Energy, 111(1), 543-555.
  • Jacovides, C.P. Tymvios, F.S. Assimakopoulos, V.D. Kaltsounides, N.A. (2016). Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation. Renewable Energy, 31(5), 2492-2504.
  • Gaurav, P. Lalit, K.K. (2023). Techno-Economic Analysis of Photovoltaci-Thermal (PV/T) in the Perspective of MSME Sector, PDEU Journal of Energy and Management, 9(1), 29-35.
  • Armel, Z.K. Modeste, K.N. Elie, S. Franck, A.T.K. Mahamat, H.B. Boris, A.P.P. Venant, S.C. (2024). Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon, Heliyon, 10(7), e24000.
  • Mustapha, A.O. Jingyuan, X. Christos, N.M. Yasser, M. (2022). Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation, Renewable Energy, 196(1), 720-736.
  • Penaka, S.R. Saini, P.K. Zhang, X. Amo, A. (2020). Digital Mapping of Techno-Economic Performance of a Water-Based Solar Photovoltaic/Thermal (PVT) System for Buildings over Large Geographical Cities. Buildings, 10(5), 148-153.
  • Abdul-Ganiyu, S. Quansah, D.A. Ramde, E.W. Seidu, R. Adaramola, M.S. (2021). Techno-economic analysis of solar photovoltaic (PV) and solar photovoltaic thermal (PVT) systems using exergy analysis. Sustainable Energy Technologies and Assessments, 47(10), 101520.
  • Rafiq, M.A. Zhang, L. Kung, C.C. (2022). A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China. SAGE, 12(2), 1-7.
  • Jurčević, M. Nižetić, S. Čoko, D. Arıcı, M. Hoang, A.T. Giama, E. (2023). Papadopoulos A. Techno-economic and environmental evaluation of photovoltaic-thermal collector design with pork fat as phase change material. Energy Conversion and Management, 284(5), 116968.
  • Patel, G. Khurana, L.K. (2023). Techno-Economic Analysis of Photovoltaic-Thermal (PV-T) in the Perspective of MSME Sector. PDEU Journal of Energy and Management, 9(5), 29-35.
  • Scharmer, K. Greif, J. (2000). European Solar Radiation Atlas, Vol. 1, Fundamentals and Maps’, Published for the Commission of the European Communities by Presses de l’Ecole, Ecole des Mines de Paris, France.
  • Reindl, D.T. Beckman, W.A. Duffie, J.A. (1990). Diffuse fraction correlations, Solar Energy, 45(1), 1-7.
  • Heimrath, R. Haller, M. (2007). Advanced storage concepts for solar and low energy buildings, A Report of IEA Solar Heating and Cooling Programme. Task 32 Report A2 of Subtask A.
  • https://data.tuik.gov.tr/Bulten/Index?p=Yapi-Izin-Istatistikleri-I.-Ceyrek:-Ocak-Mart,-2024-53750 Accessed 10 June 2024
  • https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=AKSARAY Accessed 10 June 2024
  • https://tr.weatherspark.com/y/75995/Strasburg-Mecklenburg-Vorpommern-Almanya-Ortalama-Hava-Durumu-Y%C4%B1l-Boyunca Accessed 10 June 2024
  • IEA PVPS, Strategic PV Analysis and Outreach Snapshot of Global PV Markets 2021, Report IEA-PVPS T1-39:2021 April 2021
  • IEA, Turkey 2021 Energy Policy Review, International Energy Agency
  • EPDK, Energy Market Regulatory Authority 2024 Activity Report.
  • Izmir Jeotermal, https://izmirjeotermal.com.tr/ucret-tarifeleri-2019-2020-isitma-sezonu. Accessed 04 April 2024.
  • Tcmb,http://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Main+Menu/Istatistikler/Enflasyon+Verileri/Tuketici+Fiyatlari. Accessed 04 April 2024.
  • Kalogirou, S.A. Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion and Management, 7(2), 3368–3382.
  • Rasoul, S. A. Nikoofard, S. Ugursal, V.I. Morrison, I.B. (2017). Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy and Buildings, 152(2), 667-679.
  • Gu, Y. Zhang, X. Myhren, J.A. Han, M. Chen, X. Yuan, Y. (2018). Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energy Conversion and Management, 165/6), 8-24.
  • Farghally H.M. Ahmed N.M. El-madany N.M. Atia D.M. Fahmy F.H. (2015). Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector, International Energy Journal, 15(1), 21-32.
  • Calise, F. Accadia, M.D. Vanoli, L. (2012). Design and Dynamic Simulation of A Novel Solar Trigeneration System Based on Hybrid Photovoltaic/Thermal Collectors (PVT), Energy Conversion and Management, 60(1), 214–225.
  • Anderson, T.N. Duke, M. Morrison, G.L. Carson, K.J. (2009). Performance of A Building Integrated Photovoltaic/Thermal (BIPVT) Solar Collector, Solar Energy, 83(1), 445-455.
  • Green, M. (1998). Solar Cells: Operating Principles, Technology and System Applications, The University of New South Wales, Kensington, Australia.
  • Ayan, B. Anurag, S. Ravindra, M.P. Sanjiv, K.J. Santosh, G.N. Mukesh, S. (2022). Design, Modelling, and Analysis of Novel Solar PV System using MATLAB, Materials Today: Proceedings, 51(1), 756-763.
  • Amine, A. Shafiqur, R. Mahmut, S.B. Zafar, S. (2023). Recent technical approaches for improving energy efficiency and sustainability of PV and PV-T systems: A comprehensive review, Sustainable Energy Technologies and Assessments, 56(1), 103026,
  • Žižlavský, O. (2014). Net present value approach: method for economic assessment of innovation projects. 19th International Scientific Conference; Economics and Management, 23-25 April 2014, Riga, Latvia
  • Marchioni, A. Magni, C.A. (2018). Investment decisions and sensitivity analysis: NPV-consistency of rates of return. European Journal of Operational Research, 268(1), 361-372.
  • Heyd, G.T. (2018). The Probabilistic Evaluation of Net Present Value of Electric Power Distribution Systems Based on the Kaldor–Hicks Compensation Principle. IEEE Transactions on Power Systems, 33(4), 1-7.
  • Imteaz, M.A. Ahsan, A. (2018). Solar panels: Real efficiencies, potential productions and payback periods for major Australian cities. Sustainable Energy Technologies and Assessments, 25(2), 119-125.
  • Lawrence, A. Karlsson, M. Nehler, T. Thollander, P. (2019). Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry. Applied Energy, 240(4), 499-512.
  • Koç, İ. Başaran K. (2019). PV/T tabanlı bir sistemde MATLAB/Simulink kullanılarak yapılan performans analizi, Politeknik Dergisi, 22(1), 229-236

Binalarda Yenilenebilir Isı ve Elektrik Enerjisi için PV/T Sistem Uygulaması: Performans ve Tekno-Ekonomik Analiz

Yıl 2024, Cilt: 44 Sayı: 2, 359 - 373, 01.11.2024
https://doi.org/10.47480/isibted.1477069

Öz

Konut yapılarında elektrik ve termal enerji yoğun olarak kullanılmaktadır. Bu ihtiyaçların farklı sistemlerle karşılanması, verimlilik kaybına ve yatırım kararlarının alınmasında kritik önem taşıyan ilk yatırım maliyetinin artmasına neden olmaktadır. Bu nedenle ev kullanıcılarının ekonomik yükünü azaltmak için fotovoltaik termal (PV/T) sistemler kullanılmaktadır. Bu makalede PV/T sistemin performansının belirlenmesi ve anlık elektriksel ve ısıl verim dikkate alınarak ekonomik bir analiz yapılması amaçlanmaktadır. Sistemi ekonomik olarak değerlendirmek için net bugünkü değer (NPV), geri ödeme süresi (PBP) ve seviyelendirilmiş enerji maliyeti (LCOE) değerleri kullanılmıştır. Bu çalışmanın yeniliği PV/T kollektörlerin verimliliği, ana su sıcaklığının yanı sıra ortam sıcaklığı da dikkate alınmış ve saatlik bazda hesaplanan verim değerleri alınarak üretilecek ısı ve elektrik enerjisi hesaplanmıştır. . Ayrıca tüm sistemin kayıpları ve yıllık bozulmaları da hesaplamaya dahil edmiştir. 25 yıllık sistem yaşam süresi boyunca 8,96 m2 proje büyüklüğü için LCOE, NPV, PBP, ortalama elektrik ve ısıl verimler sırasıyla 0,0911 €/kWh, 2718,5 €, 6 yıl, %14,7 ve %62,3 olarak bulunmuştur.

Kaynakça

  • Wolf, M. (1976). Performance analysis of combined heating and photovoltaic power systems for residences. Energy Conversation 16(1),79–90.
  • Boer, K.W. (2003). Tamm G. Solar conversion under consideration of energy and entropy. Solar Energy 74(1), 525–8.
  • Florschuetz, L.W. (1979). Extension of the Hottel–Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy, 22(1), 361–6.
  • Hendrie, S.D. (1982). Photocoltaic/Thermal Collector Development Program-Final Report. The U.S. Department of Energy Under Contract NO DE-AC02-76ET20279
  • Cox, C.H. (1985). Raghuraman P. Desig.n considerations for flat-plate photovoltaic/thermal collectors. Solar Energy, 35(3),227–41.
  • Suzuki, A. Kitamura, S. (1979). Combined photovoltaic and thermal hybrid collector. Japan J Phys, 19(2), 79–83.
  • Karl, H. (1979). Photovoltaischer Hybridkollektor. In: Fourth international congress laser, 79 opto-electronics, Munchen.
  • Komp, R.J. (1985). Field experience and performance evaluation of a novel photovoltaic-thermal hybrid solar energy collector. Intersol, 85.
  • Schwartz, R. Rao, K.H.S. Tscharner, R. (1983). Computer-aided analysis of thermal images of solar cells and solar PV/T collectors. In: Fifth EPSEC, Athens.
  • Lalovic, B. Kiss, Z. Weakliem, H. (1986). A hybrid amorphous silicon photovoltaic and thermal solar collector. Solar Cells, 19(1), 131–8.
  • Lalovic, B. Pavlovic, T. Kiss, Z. Dine, J. (1988). The application of hybrid a-Si:H PV and thermal collectors for different usages. In: Eighth EPSEC.
  • Zondag, H.A. Vries, D.W. Helden, W.G.J. Zolingen, R.J.C. Steenhoven, A.A. (2003). The yield of different combined PV-thermal collector designs. Solar Energy, 74(1), 253–69.
  • Leenders, F. Schaap, A.B. Ree, B.C.G. Helden, W.G.J. (2000). Technology review on PV/Thermal concepts. In: 16th EPSEC, Glasgow.
  • Bakker, M. Zondag, H.A. Helden, W.G.J. (2002). Design of a dual flow photovoltaic/thermal combi panel. In: PV in Europe, Rome.
  • Bakker, M. Zondag, H.A. Elswijk, M.J. Ottenbros, M.T.N. Helden, W.G.J. (2004). Outdoor performance of uncovered PV/Thermal panels. In: 19th EPSEC, Paris.
  • Rockendorf, G. Sillmann, R. Podlowski, L. Litzenburger, B. (1999). PV-hybrid and thermo-electric collectors. Solar Energy, 67(4–6), 227–37.
  • Hausler, T. Rogass, H. (2000). Latent heat storage on photovoltaics. In: 16th EPSEC, Glasgow.
  • Soerensen, B. (2001). Modelling of hybrid PV-thermal systems. In: 17th EPSEC, Munich.
  • Tripanagnostopoulos, Y. Nousia, T.H. Souliotis, M. Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217–34.
  • Tselepis, S. Tripanagnostopoulos, Y. (2002). Economic analysis of hybrid photovoltaic/thermal solar systems and comparison with standard PV modules. In: PV in Europe, Rome.
  • Kalogirou, S.A. (2001). Use of TRNSYS for modelling and simulation of a hybrid PV-thermal solar system for Cyprus. Renewable Energy, 23(1), 247–60.
  • Bergene, T. Løvvik, O.M. (1995). Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol Energy, 55(6), 453–62.
  • Meir, M.G. Rekstad, J.B. Løvvik, OM. (2002). A study of a polymer-based radiative cooling system. Solar Energy, 73(6), 403–17.
  • Sandnes, B. Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy, 72(1), 63–73.
  • Hayakashi, B. Muzusaki, K. Satoh, T. Hatanaka, T. (1989). Research and development of photovoltaic/thermal hybrid solar power generation system. In: ISES Solar World Congress, Kobe.
  • Fujisawa, T. Tani, T. (1997). Binary utilization of solar energy with photovoltaic-thermal hybrid collector. In: ISES Solar World Congress, Korea.
  • Ito, S. Miura, N. Wang, K. (1999). Performance of a heat pump using direct expansion solar collectors. Solar Energy, 65(3), 189–96.
  • Huang, B.J. Lin, T.H. Hung, W.C. Sun, F.S. (1999). Solar photo-voltaic/thermal co-generation collector. In: ISES Solar World Congress, Jerusalem.
  • Huang, B.J. Lin, T.H. Hung, W.C. (2001). Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy, 70(5), 443–8.
  • Garg, H.P. Agarwal, R.K. (1995). Some aspects of a PV/T collector/forced circulation flat plate solar water haeter with solar cells. Energy Conversation and Management, 36(2),87–99.
  • Thomas, H.P. Hayter, S.J. Martin, R.L. Pierce, L.K. (2000). PV and PV/hybrid products for buildings. In: 16th EPSEC, Glasgow.
  • Krauter, S. Araujo, G. Schroer, S. Hanitsch, R. Salhi, M.J. Triebel, C. (1999). Combined photovoltaic and solar thermal systems for fac-ade integration and building insulation. Solar Energy, 67(4–6), 239–48.
  • Krauter, S. Salhi, M.J. Schroer, S. Hanitsch, R. (2001). New fac-ade system consisting of combined photovoltaic and solar thermal generators with building insulation. In: Seventh IBPSA, Rio de Janeiro, Brazil.
  • Jai, P. (1994). Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management, 35(11), 967-972.
  • Kim, J. (2012). Comparison of Electrical and Thermal Performances of Glazed and Unglazed PVT Collectors. International Journal of Photoenergy, 1(4), 7.
  • Aste, N. Leonforte, F. Pero, C. (2015). Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 112(2), 85–99.
  • JieJia, H. Tin-tai, C. Hua, Y. Jianping, L. WeiHe, S. (2006). Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings, 38(12), 1380-1387.
  • Saitoh, H. Hamada, Y. Kubota, H. Nakamura, M. Ochifuji, K. Yokoyama, S. (2003). Field experiments and analyses on a hybrid solar collector. Applied Thermal Engineering, 23(16), 2089–105.
  • Minglu, Q. Jianbo, C. Linjie, N. Fengshu, L. Qian, Y. (2016). Experimental study on the operating characteristics of a novel photovoltaic/thermal integrated dual-source heat pump water heating system. Applied Thermal Engineering, 94(2), 819–82.
  • Niccolò, A. Claudio, P. Fabrizio, L. Massimiliano, M. (2016). Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector. Solar Energy, 135(1), 551–568.
  • Fudholi, A. Sopian, K. Yazdi, M.H. Ruslan, M.H. Ibrahim, A. Kazem, H.A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78(1), 641–651.
  • Ibrahim, A. Fudholi, A. Sopian, K. Othman, M.Y. Ruslan, M.H. (2014). Efficiencies and improvement potential of building integrated PV thermal (BIPVT) system. Energy Conversion and Management, 77(1), 527–34.
  • Kiran, S. Devadiga, U. (2014). Performance analysis of hybrid PV/Thermal systems. Int J Emerg Technol Adv Eng, 4(3),80–6.
  • Alzaabi, A.A. Badawiyeh, N.K. Hantoush, H.O. Hamid, A.K. (2014). Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. International. J Smart Grid Clean Energy, 3(2), 385–9.
  • Rosa-Clot, M. Rosa-Clot, P. Tina, G.M. Ventura, C. (2016). Experimental PV-thermal power plants based on TESPI panel. Solar Energy, 133(1), 305–14.
  • Yazdanifard, F. Ebrahimnia-Bajestan, E. Ameri, M. (2016). Investigating the performance of a water-based PV/thermal (PV/T) collector in laminar and turbulent flow regime. Renewable Energy, 99(1), 295–306.
  • Daghigh, R. Ibrahim, A. Jina, G.L. Ruslan, M.H. Sopian, K. (2011). Predicting the performance of amorphous and crystalline silicon based PV solar thermal collectors. Energy Conversation and Management, 52(3), 1741–7.
  • Herrando, M. Markides, C.N. Hellgardt, K. (2014). A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Applied Energy, 122(1), 288–309.
  • Madalina, B. Monica, S. George, D. (2023). Performance Analysis and Comparison of an Experimental Hybrid PV, PVT and Solar Thermal System Installed in a Preschool in Bucharest, Romania. Energies, 16(14), 5321.
  • Kegui, L. Qiongwan, Y. Bin, Z. Gang, P. (2023). Performance analysis of a novel PV/T hybrid system based on spectral beam splitting, Renewable Energy, 207(5), 398-406.
  • Dongxing, S. Wenbo, T. Bo, A. Ke, W. (2024). Twofold spectrum split enabling spectral selectivity tailoring and deep temperature decoupling for high exergy efficiency in a concentrating photovoltaic/thermal (PV/T) system, Energy Conversion and Management, 303(3), 118153.
  • Siyan, C. Bin, Z. Qiongwan, Y. Ken, C. Kongfu, H. Gang, P. (2024). Seasonal heat regulation in photovoltaic/thermal collectors with switchable backplate technology: Experiments and simulations, Renewable Energy, 224(4), 120139.
  • Buker, M.S. Mempouo, B. Riffat, S.B. (2014). Performance evaluation and techno-economic analysis of a novel building integrated PV/T roof collector: an experimental validation. Energy and Buildings, 76(1), 164–75.
  • Riggs, B.C. Biedenharnb, R. Dougher, C. (2017). Techno-economic analysis of hybrid PV/T systems for process heat using electricity to subsidize the cost of heat. Applied Energy, 208(1), 1370–8.
  • Wilson, R. Young, A. (1996). The embodied energy PP of photovoltaic installations applied to buildings in the UK. Building and Environment, 31(4), 299–305.
  • Zhang, X. Shen, J. Adkins, D. (2015). The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates. Energy Conversation and Management, 106(1), 964–86.
  • Michael, J.J. Selvarasan, I. (2017). Economic analysis and environmental impact of flat plate roof mounted solar energy systems. Solar Energy, 142(3), 159–70.
  • Coventry, J.S. Lovegrove, K. (2003). Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic Pv/thermal system. Solar Energy, 75(5), 63–72.
  • Tripanagnostopoulos, Y. Souliotis, M. Battisti, R. Corrado, A. (2005). Energy, cost and LCA results of PV and hybrid PVT solar systems. Progress Photovoltaics, 13(3), 235–250.
  • Kalogirou, S.A.,Tripanagnostopoulos, Y. (2007). Industrial application of PVT solar energy systems. Appl. Therm. Eng. 27(8–9), 1259–1270.
  • Mishra, R.K. Tiwari, G.N. (2013). Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Solar Energy, 91(1), 161–173.
  • Mahmut, S.B. Blaise, M. Saffa, B.R. (2014). Performance evaluation and techno-economic analysis of a novelbuilding integrated PV/T roof collector: An experimental validation. Energy and Buildings, 76(2), 164–175.
  • Ka-Kui, Tse. Tin-Tai, C. Yan, S. (2016). Performance evaluation and economic analysis of a full scalewater-based photovoltaic/thermal (PV/T) system in an office building. Energy and Buildings, 122(1), 42–52.
  • Alba, R. Maria, A.C. Ilaria, G. James, F. Christos, N.M. (2017). Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Conversion and Management, 150(2), 838–850.
  • Augusto, B. Alessandro, G. Marco, P. Cesare, S. (2017). Photovoltaic/thermal (PV/T) solar system: Experimental measurements, performance analysis and economic assessment. Renewable Energy, 111(1), 543-555.
  • Jacovides, C.P. Tymvios, F.S. Assimakopoulos, V.D. Kaltsounides, N.A. (2016). Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation. Renewable Energy, 31(5), 2492-2504.
  • Gaurav, P. Lalit, K.K. (2023). Techno-Economic Analysis of Photovoltaci-Thermal (PV/T) in the Perspective of MSME Sector, PDEU Journal of Energy and Management, 9(1), 29-35.
  • Armel, Z.K. Modeste, K.N. Elie, S. Franck, A.T.K. Mahamat, H.B. Boris, A.P.P. Venant, S.C. (2024). Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon, Heliyon, 10(7), e24000.
  • Mustapha, A.O. Jingyuan, X. Christos, N.M. Yasser, M. (2022). Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation, Renewable Energy, 196(1), 720-736.
  • Penaka, S.R. Saini, P.K. Zhang, X. Amo, A. (2020). Digital Mapping of Techno-Economic Performance of a Water-Based Solar Photovoltaic/Thermal (PVT) System for Buildings over Large Geographical Cities. Buildings, 10(5), 148-153.
  • Abdul-Ganiyu, S. Quansah, D.A. Ramde, E.W. Seidu, R. Adaramola, M.S. (2021). Techno-economic analysis of solar photovoltaic (PV) and solar photovoltaic thermal (PVT) systems using exergy analysis. Sustainable Energy Technologies and Assessments, 47(10), 101520.
  • Rafiq, M.A. Zhang, L. Kung, C.C. (2022). A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China. SAGE, 12(2), 1-7.
  • Jurčević, M. Nižetić, S. Čoko, D. Arıcı, M. Hoang, A.T. Giama, E. (2023). Papadopoulos A. Techno-economic and environmental evaluation of photovoltaic-thermal collector design with pork fat as phase change material. Energy Conversion and Management, 284(5), 116968.
  • Patel, G. Khurana, L.K. (2023). Techno-Economic Analysis of Photovoltaic-Thermal (PV-T) in the Perspective of MSME Sector. PDEU Journal of Energy and Management, 9(5), 29-35.
  • Scharmer, K. Greif, J. (2000). European Solar Radiation Atlas, Vol. 1, Fundamentals and Maps’, Published for the Commission of the European Communities by Presses de l’Ecole, Ecole des Mines de Paris, France.
  • Reindl, D.T. Beckman, W.A. Duffie, J.A. (1990). Diffuse fraction correlations, Solar Energy, 45(1), 1-7.
  • Heimrath, R. Haller, M. (2007). Advanced storage concepts for solar and low energy buildings, A Report of IEA Solar Heating and Cooling Programme. Task 32 Report A2 of Subtask A.
  • https://data.tuik.gov.tr/Bulten/Index?p=Yapi-Izin-Istatistikleri-I.-Ceyrek:-Ocak-Mart,-2024-53750 Accessed 10 June 2024
  • https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=AKSARAY Accessed 10 June 2024
  • https://tr.weatherspark.com/y/75995/Strasburg-Mecklenburg-Vorpommern-Almanya-Ortalama-Hava-Durumu-Y%C4%B1l-Boyunca Accessed 10 June 2024
  • IEA PVPS, Strategic PV Analysis and Outreach Snapshot of Global PV Markets 2021, Report IEA-PVPS T1-39:2021 April 2021
  • IEA, Turkey 2021 Energy Policy Review, International Energy Agency
  • EPDK, Energy Market Regulatory Authority 2024 Activity Report.
  • Izmir Jeotermal, https://izmirjeotermal.com.tr/ucret-tarifeleri-2019-2020-isitma-sezonu. Accessed 04 April 2024.
  • Tcmb,http://www.tcmb.gov.tr/wps/wcm/connect/TR/TCMB+TR/Main+Menu/Istatistikler/Enflasyon+Verileri/Tuketici+Fiyatlari. Accessed 04 April 2024.
  • Kalogirou, S.A. Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion and Management, 7(2), 3368–3382.
  • Rasoul, S. A. Nikoofard, S. Ugursal, V.I. Morrison, I.B. (2017). Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy and Buildings, 152(2), 667-679.
  • Gu, Y. Zhang, X. Myhren, J.A. Han, M. Chen, X. Yuan, Y. (2018). Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energy Conversion and Management, 165/6), 8-24.
  • Farghally H.M. Ahmed N.M. El-madany N.M. Atia D.M. Fahmy F.H. (2015). Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector, International Energy Journal, 15(1), 21-32.
  • Calise, F. Accadia, M.D. Vanoli, L. (2012). Design and Dynamic Simulation of A Novel Solar Trigeneration System Based on Hybrid Photovoltaic/Thermal Collectors (PVT), Energy Conversion and Management, 60(1), 214–225.
  • Anderson, T.N. Duke, M. Morrison, G.L. Carson, K.J. (2009). Performance of A Building Integrated Photovoltaic/Thermal (BIPVT) Solar Collector, Solar Energy, 83(1), 445-455.
  • Green, M. (1998). Solar Cells: Operating Principles, Technology and System Applications, The University of New South Wales, Kensington, Australia.
  • Ayan, B. Anurag, S. Ravindra, M.P. Sanjiv, K.J. Santosh, G.N. Mukesh, S. (2022). Design, Modelling, and Analysis of Novel Solar PV System using MATLAB, Materials Today: Proceedings, 51(1), 756-763.
  • Amine, A. Shafiqur, R. Mahmut, S.B. Zafar, S. (2023). Recent technical approaches for improving energy efficiency and sustainability of PV and PV-T systems: A comprehensive review, Sustainable Energy Technologies and Assessments, 56(1), 103026,
  • Žižlavský, O. (2014). Net present value approach: method for economic assessment of innovation projects. 19th International Scientific Conference; Economics and Management, 23-25 April 2014, Riga, Latvia
  • Marchioni, A. Magni, C.A. (2018). Investment decisions and sensitivity analysis: NPV-consistency of rates of return. European Journal of Operational Research, 268(1), 361-372.
  • Heyd, G.T. (2018). The Probabilistic Evaluation of Net Present Value of Electric Power Distribution Systems Based on the Kaldor–Hicks Compensation Principle. IEEE Transactions on Power Systems, 33(4), 1-7.
  • Imteaz, M.A. Ahsan, A. (2018). Solar panels: Real efficiencies, potential productions and payback periods for major Australian cities. Sustainable Energy Technologies and Assessments, 25(2), 119-125.
  • Lawrence, A. Karlsson, M. Nehler, T. Thollander, P. (2019). Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry. Applied Energy, 240(4), 499-512.
  • Koç, İ. Başaran K. (2019). PV/T tabanlı bir sistemde MATLAB/Simulink kullanılarak yapılan performans analizi, Politeknik Dergisi, 22(1), 229-236
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Kıvanç Başaran 0000-0001-9613-6620

İlayda Koç 0000-0002-9575-4088

Yayımlanma Tarihi 1 Kasım 2024
Gönderilme Tarihi 2 Mayıs 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 44 Sayı: 2

Kaynak Göster

APA Başaran, K., & Koç, İ. (2024). PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis. Isı Bilimi Ve Tekniği Dergisi, 44(2), 359-373. https://doi.org/10.47480/isibted.1477069
AMA Başaran K, Koç İ. PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis. Isı Bilimi ve Tekniği Dergisi. Kasım 2024;44(2):359-373. doi:10.47480/isibted.1477069
Chicago Başaran, Kıvanç, ve İlayda Koç. “PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis”. Isı Bilimi Ve Tekniği Dergisi 44, sy. 2 (Kasım 2024): 359-73. https://doi.org/10.47480/isibted.1477069.
EndNote Başaran K, Koç İ (01 Kasım 2024) PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis. Isı Bilimi ve Tekniği Dergisi 44 2 359–373.
IEEE K. Başaran ve İ. Koç, “PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis”, Isı Bilimi ve Tekniği Dergisi, c. 44, sy. 2, ss. 359–373, 2024, doi: 10.47480/isibted.1477069.
ISNAD Başaran, Kıvanç - Koç, İlayda. “PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis”. Isı Bilimi ve Tekniği Dergisi 44/2 (Kasım 2024), 359-373. https://doi.org/10.47480/isibted.1477069.
JAMA Başaran K, Koç İ. PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis. Isı Bilimi ve Tekniği Dergisi. 2024;44:359–373.
MLA Başaran, Kıvanç ve İlayda Koç. “PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis”. Isı Bilimi Ve Tekniği Dergisi, c. 44, sy. 2, 2024, ss. 359-73, doi:10.47480/isibted.1477069.
Vancouver Başaran K, Koç İ. PV/T System Application for Renewable Heat and Electric Energy in Buildings: Performance and Techno-Economic Analysis. Isı Bilimi ve Tekniği Dergisi. 2024;44(2):359-73.