Research Article
BibTex RIS Cite

INVESTIGATIONS ON THERMAL PERFORMANCE OF AN ELECTRONIC BOARD USING CONDUCTION-BASED FINITE ELEMENT METHOD WITH A NEW MODELING APPROACH

Year 2024, Volume: 44 Issue: 2, 294 - 307, 01.11.2024
https://doi.org/10.47480/isibted.1563932

Abstract

Electronic systems are used in almost all areas of industry, with an increasing power consumption rate. This trend makes thermal management of electronics compulsory in order for proper operation. Several methods can be employed to examine electronics’ thermal behavior. Conduction-based Finite Element Method (FEM) for heat transfer analysis is one of them; providing accurate solutions within short solution times is one of its outstanding advantages. Nevertheless, the fluid inside or around the system, usually air for electronic systems, is not included directly in the conduction-based FEM analysis model. This is an essential deficiency in terms of solution accuracy. If this drawback is overcome, conduction-based FEM will become a preferred analysis method, especially for transient problems under natural convection. In this study, a conduction-based FEM analysis model of an electronic board with two heat-dissipating components inside an enclosure under transient natural convection was developed. The procedure of the model involves the correction of unknown input parameters. An experimental investigation was performed, the results of which were used as reference values for the correction process. These unknown parameters were determined iteratively. The iteration was continued until the results of the analysis and those of the experiment matched. The difference between the results of the analysis and those of the experiment was less than 2-3°C. Some parametrical thermal investigations were performed on the electronic board using the final analysis model.

Supporting Institution

Roketsan

References

  • Battula N.K., Daravath S., Gampa G.K., 2024, Numerical studies on conjugate convection from discretely heated electronic board, World Journal of Engineering, 21 (1), 107-114.
  • Byon C., Choo K., Kim S.J., 2011, Experimental and analytical study on chip hot spot temperature, International Journal of Heat and Mass Transfer, 54 (9-10), 2066–2072.
  • Chavan S., Sathe A., 2016, Natural convection cooling of electronic enclosure, International Journal of Trend in Research and Development, 3 (4), 93–97.
  • Chen W.H., Cheng H.C., Shen H.A., 2003, An effective methodology for thermal characterization of electronic packaging, IEEE Transactions on Components and Packaging Technologies, 26 (1), 222–232.
  • Cheng H.C., Chen W.H., Cheng H.F., 2008, Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component, Applied Thermal Engineering, 28 (5-6), 575-588.
  • Cheng H.C., Ciou W.R., Chen W.H., Kuo J.L., Lu H.C., Wu R.B., 2013, Heat dissipation analysis and design of a board-level phased-array transmitter module for 60-GHz communication, Applied Thermal Engineering, 53 (1), 78–88.
  • Deng Q.H., 2008, Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs, International Journal of Heat Mass Transfer, 51 (25–26), 5949–5957.
  • Devellioğlu Y., 2008, Electronic packaging and environmental test and analysis of an emi shield electronic unit for naval platform, M.Sc. thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey.
  • Ellison G.N., 2020, Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling (2. Ed.), Boca Raton, FL : CRC Press/Taylor & Francis Group.
  • Eveloy V., Rodgers P., Lohan J., 2002, Comparison of numerical predictions and experimental measurements for the transient thermal behavior of a board-mounted electronic component, ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, California, USA, 36-45.
  • Eveloy V., Rodgers P., 2005, Prediction of electronic component-board transient conjugate heat transfer, IEEE Transactions on Components and Packaging Technologies, 28 (4), 817–829.
  • Gilmore D.G., Donabedian M., 2003, Spacecraft Thermal Control Handbook. Reston, Virginia: American Institute of Aeronautics and Astronautics.
  • Han C.K., Jung H., 2017, A study on thermal behavior prediction for automotive electronics unit based on CFD, 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Amsterdam, Holland, 1-4.
  • Holman J.P., 1994, Experimental Methods for Engineers (Sixth Ed.), McGraw-Hill, New York.
  • Joshy S., Jellesen M., Ambat R., 2017, Effect of interior geometry on local climate inside an electronic device enclosure, in 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, Florida, USA, 779-783.
  • Khatamifar M., Lin W., Armfield S.W., Holmes D., Kirkpatrick M.P., 2017, Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity, International Communications in Heat and Mass Transfer, 81, 92–103.
  • Lim C.H., Abdullah M.Z., Aziz I.A., Khor C.Y., Aziz M.S.A, 2021, Optimization of flexible printed circuit board’s cooling with air flow and thermal effects using response surface methodology, Microelectronics International, 38 (4), 182-205.
  • Lira E., Greenlee C., 2007, Thermal analysis and testing of missile avionics systems, AIAA Thermophysics Conference, Miami, Florida, USA.
  • Nogueira R.M., Martins M.A., Ampessan F., 2011, Natural convection in rectangular cavities with different aspect ratios, Revista De Engenharia Térmica, 10 (1-2), 44-49.
  • Ocak M., 2010, Conduction-based compact thermal modeling for thermal analysis of electronic components, M.Sc. thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey.
  • Otaki D., Nonaka H., Yamada N., 2022, Thermal design optimization of electronic circuit board layout with transient heating chips by using Bayesian optimization and thermal network model, International Journal of Heat and Mass Transfer, 184, 122263.
  • Pang Y.F., 2005, Assessment of thermal behavior and development of thermal design guidelines for integrated power electronics modules, Ph.D. dissertation Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
  • Rakshith B.L., Asirvatham L.G., Angeline A.A., Manova S., Bose J.R., Raj J.P.S., Mahian O., Wongwises S., 2022, Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview, Renewable and Sustainable Energy Reviews, 170, 112956.
  • Rodgers P., Eveloy V., Lohan J., Fager C.M., Tiilikka P., Rantala J., 1999, Experimental validation of numerical heat transfer predictions for single and multi-component printed circuit boards in natural convection environments, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Diego, California, USA, 54-64.
  • Rosten H.I., Parry J.D., Addison J.S., Viswanath R., Davies M., Fitzgerald E., 1995, Development, validation and application of a thermal model of a plastic quad flat pack, 45th Electronic Components and Technology Conference, Las Vegas, Nevada, USA, 1140-1151.
  • Stancato F., dos Santos L.C., Pustelnik M., 2017, Electronic package cooling analysis in an aircraft using CFD, SAE Technical Paper Series, 1.
  • Steinberg D.S., 1991, Cooling Techniques for Electronic Equipment (2nd ed.), Nashville, TN: John Wiley & Sons.
  • Taliyan S.S., Sarkar S., Biswas B.B., Kumar M., 2010, Finite element based thermal analysis of sealed electronic rack and validation, 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), Mumbai, India, 443-447.
  • Wang Z., Zheng S., Xu S., Dai Y. 2024, Investigation on the thermal and hydrodynamic performances of a micro-pin fin array heat sink for cooling a multi-chip printed circuit boards, Applied Thermal Engineering, 239, 122178.
  • Xu G., 2017, Multi-core server processors thermal analysis, 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, Florida, USA, 416-421.
  • Zahn B.A., Stout R.P., 2002, Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis, Thirteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, Texas, USA.
  • Zaman F.S., Turja T.S., Molla M.M., 2013, Buoyancy driven natural convection flow in an enclosure with two discrete heating from below, Procedia Engineering, 56, 104–111.

İLETİM TABANLI SONLU ELEMANLAR YÖNTEMİ KULLANILARAK YENİ BİR MODELLEME YAKLAŞIMI İLE BİR ELEKTRONİK KARTININ ISIL PERFORMANSININ İNCELENMESİ

Year 2024, Volume: 44 Issue: 2, 294 - 307, 01.11.2024
https://doi.org/10.47480/isibted.1563932

Abstract

Elektronik sistemler, artan güç tüketimiyle birlikte sanayinin hemen her alanında kullanılmaktadır. Bu eğilim, elektronik elemanların düzgün çalışması için termal yönetimini zorunlu kılmaktadır. Elektronik elemanların termal davranışını incelemek için çeşitli yöntemler kullanılmaktadır. Isı transferi analizi için İletim Tabanlı Sonlu Elemanlar Yöntemi (SEY) bunlardan biridir; Kısa çözüm sürelerinde doğru çözümler sunması öne çıkan avantajlarından biridir. Bununla birlikte, sistemin içindeki veya etrafındaki akışkan (elektronik sistemler için genellikle hava), doğrudan iletim tabanlı SEY analiz modeline dahil edilmez. Bu çözüm doğruluğu açısından önemli bir eksikliktir. Bu dezavantajın aşılması durumunda, iletim tabanlı SEY, özellikle doğal taşınım altındaki geçici problemler için tercih edilen bir analiz yöntemi haline gelecektir. Bu çalışmada, zamana bağlı doğal konveksiyon altında bir kapalı ortam içinde iki ısı kaynağına sahip bir elektronik kartın iletim tabanlı SEY analiz modeli geliştirilmiştir. Modelin prosedürü bilinmeyen parametrelerinin düzeltilmesini içermektedir. Sonuçları düzeltme işlemi için referans değerleri olarak kullanılan deneysel bir araştırma gerçekleştirilmiştir. Bu bilinmeyen parametreler iteratif olarak belirlenmiştir. Analiz sonuçları ile deneyin sonuçları eşleşene kadar iterasyona devam edildi. Analiz sonuçları ile deneysel sonuçlar arasındaki fark 2-3°C’nin altında olduğu tespit edilmiştir. Son analiz modeli kullanılarak elektronik kart üzerinde bazı parametrik termal incelemeler gerçekleştirilmiştir.

References

  • Battula N.K., Daravath S., Gampa G.K., 2024, Numerical studies on conjugate convection from discretely heated electronic board, World Journal of Engineering, 21 (1), 107-114.
  • Byon C., Choo K., Kim S.J., 2011, Experimental and analytical study on chip hot spot temperature, International Journal of Heat and Mass Transfer, 54 (9-10), 2066–2072.
  • Chavan S., Sathe A., 2016, Natural convection cooling of electronic enclosure, International Journal of Trend in Research and Development, 3 (4), 93–97.
  • Chen W.H., Cheng H.C., Shen H.A., 2003, An effective methodology for thermal characterization of electronic packaging, IEEE Transactions on Components and Packaging Technologies, 26 (1), 222–232.
  • Cheng H.C., Chen W.H., Cheng H.F., 2008, Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component, Applied Thermal Engineering, 28 (5-6), 575-588.
  • Cheng H.C., Ciou W.R., Chen W.H., Kuo J.L., Lu H.C., Wu R.B., 2013, Heat dissipation analysis and design of a board-level phased-array transmitter module for 60-GHz communication, Applied Thermal Engineering, 53 (1), 78–88.
  • Deng Q.H., 2008, Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs, International Journal of Heat Mass Transfer, 51 (25–26), 5949–5957.
  • Devellioğlu Y., 2008, Electronic packaging and environmental test and analysis of an emi shield electronic unit for naval platform, M.Sc. thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey.
  • Ellison G.N., 2020, Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling (2. Ed.), Boca Raton, FL : CRC Press/Taylor & Francis Group.
  • Eveloy V., Rodgers P., Lohan J., 2002, Comparison of numerical predictions and experimental measurements for the transient thermal behavior of a board-mounted electronic component, ITherm 2002 Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, California, USA, 36-45.
  • Eveloy V., Rodgers P., 2005, Prediction of electronic component-board transient conjugate heat transfer, IEEE Transactions on Components and Packaging Technologies, 28 (4), 817–829.
  • Gilmore D.G., Donabedian M., 2003, Spacecraft Thermal Control Handbook. Reston, Virginia: American Institute of Aeronautics and Astronautics.
  • Han C.K., Jung H., 2017, A study on thermal behavior prediction for automotive electronics unit based on CFD, 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Amsterdam, Holland, 1-4.
  • Holman J.P., 1994, Experimental Methods for Engineers (Sixth Ed.), McGraw-Hill, New York.
  • Joshy S., Jellesen M., Ambat R., 2017, Effect of interior geometry on local climate inside an electronic device enclosure, in 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, Florida, USA, 779-783.
  • Khatamifar M., Lin W., Armfield S.W., Holmes D., Kirkpatrick M.P., 2017, Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity, International Communications in Heat and Mass Transfer, 81, 92–103.
  • Lim C.H., Abdullah M.Z., Aziz I.A., Khor C.Y., Aziz M.S.A, 2021, Optimization of flexible printed circuit board’s cooling with air flow and thermal effects using response surface methodology, Microelectronics International, 38 (4), 182-205.
  • Lira E., Greenlee C., 2007, Thermal analysis and testing of missile avionics systems, AIAA Thermophysics Conference, Miami, Florida, USA.
  • Nogueira R.M., Martins M.A., Ampessan F., 2011, Natural convection in rectangular cavities with different aspect ratios, Revista De Engenharia Térmica, 10 (1-2), 44-49.
  • Ocak M., 2010, Conduction-based compact thermal modeling for thermal analysis of electronic components, M.Sc. thesis, Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Turkey.
  • Otaki D., Nonaka H., Yamada N., 2022, Thermal design optimization of electronic circuit board layout with transient heating chips by using Bayesian optimization and thermal network model, International Journal of Heat and Mass Transfer, 184, 122263.
  • Pang Y.F., 2005, Assessment of thermal behavior and development of thermal design guidelines for integrated power electronics modules, Ph.D. dissertation Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
  • Rakshith B.L., Asirvatham L.G., Angeline A.A., Manova S., Bose J.R., Raj J.P.S., Mahian O., Wongwises S., 2022, Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview, Renewable and Sustainable Energy Reviews, 170, 112956.
  • Rodgers P., Eveloy V., Lohan J., Fager C.M., Tiilikka P., Rantala J., 1999, Experimental validation of numerical heat transfer predictions for single and multi-component printed circuit boards in natural convection environments, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Diego, California, USA, 54-64.
  • Rosten H.I., Parry J.D., Addison J.S., Viswanath R., Davies M., Fitzgerald E., 1995, Development, validation and application of a thermal model of a plastic quad flat pack, 45th Electronic Components and Technology Conference, Las Vegas, Nevada, USA, 1140-1151.
  • Stancato F., dos Santos L.C., Pustelnik M., 2017, Electronic package cooling analysis in an aircraft using CFD, SAE Technical Paper Series, 1.
  • Steinberg D.S., 1991, Cooling Techniques for Electronic Equipment (2nd ed.), Nashville, TN: John Wiley & Sons.
  • Taliyan S.S., Sarkar S., Biswas B.B., Kumar M., 2010, Finite element based thermal analysis of sealed electronic rack and validation, 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH), Mumbai, India, 443-447.
  • Wang Z., Zheng S., Xu S., Dai Y. 2024, Investigation on the thermal and hydrodynamic performances of a micro-pin fin array heat sink for cooling a multi-chip printed circuit boards, Applied Thermal Engineering, 239, 122178.
  • Xu G., 2017, Multi-core server processors thermal analysis, 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, Florida, USA, 416-421.
  • Zahn B.A., Stout R.P., 2002, Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis, Thirteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Austin, Texas, USA.
  • Zaman F.S., Turja T.S., Molla M.M., 2013, Buoyancy driven natural convection flow in an enclosure with two discrete heating from below, Procedia Engineering, 56, 104–111.
There are 32 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Yener Usul This is me 0000-0002-1087-4743

Şenol Başkaya This is me 0000-0001-9676-4387

Bülent Acar This is me

Tamer Çalışır 0000-0002-0721-0444

Publication Date November 1, 2024
Published in Issue Year 2024 Volume: 44 Issue: 2

Cite

APA Usul, Y., Başkaya, Ş., Acar, B., Çalışır, T. (2024). INVESTIGATIONS ON THERMAL PERFORMANCE OF AN ELECTRONIC BOARD USING CONDUCTION-BASED FINITE ELEMENT METHOD WITH A NEW MODELING APPROACH. Isı Bilimi Ve Tekniği Dergisi, 44(2), 294-307. https://doi.org/10.47480/isibted.1563932