Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating the long-term performance of solar heating systems: a combined approach of the F-chart and exergy analysis

Yıl 2025, Cilt: 45 Sayı: 2, 149 - 161, 30.10.2025
https://doi.org/10.47480/isibted.1567200

Öz

The F-chart method, a powerful tool for estimating the long-term performance of solar heating systems, can be integrated with exergy analysis to provide insights into design improvements, efficiency enhancements, and overall system performance. This integration, which has yet to be previously investigated, is the focus of this study. It proposes a unique approach that combines the F-chart and exergy analysis with newly defined dimensionless energy (EN) and exergy (EX) numbers. EN assesses the system's ability to meet heating load requirements based on available solar radiation and ambient conditions. At the same time, EX measures the system's efficiency by converting available exergy from the sun into helpful exergy. The analysis used the TRNSYS simulation software on a solar water heating system in Mugla, Turkey. The F-chart method determined the solar energy and exergetic fractions (F and Fex) and evaluated their impacts on EN and EX. For a collector area of 10 m2, the annual F and Fex were computed as 0.57 and 0.71, respectively. The system's energy efficiency follows the EN trend, reaching 85% in January, its lowest point in June, and around 90% in December. It is most efficient in colder and less efficient in warmer months, particularly June and July. Low EX values indicate high exergy efficiency, with a peak of 7.2 in wintertime and a 5.2% exergy efficiency in early summer. The findings have substantial practical implications, offering a clear roadmap for enhancing solar heating systems and igniting further research and development in renewable energy and thermal systems.

Kaynakça

  • Abid, M., Yousef, B. A. A., Assad, M. E., Hepbasli, A., & Saeed, K. (2018). An experimental study of solar thermal system with storage for domestic applications. Journal of Mechanical Engineering and Sciences, 12, 4098–4116. https://doi.org/10.15282/jmes.12.4.2018.09.0355
  • Afzanizam, M., Rosli, M., Shafiq, D., Zaki, M., Rahman, F. A., Sepeai, S., Hamid, N. A., & Nawam, M. Z. (2019). F-Chart Method for Design Domestic Hot Water Heating System in Ayer Keroh Melaka. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal Homepage, 56, 59–67. www.akademiabaru.com/arfmts.html
  • Agyekum, E. B., Ampah, J. D., Khan, T., Giri, N. C., Hussien, A. G., Velkin, V. I., Mehmood, U., & Kamel, S. (2024). Towards a reduction of emissions and cost-savings in homes: Techno-economic and environmental impact of two different solar water heaters. Energy Reports, 11, 963–981. https://doi.org/10.1016/j.egyr.2023.12.063
  • ASHRAE Handbook. (2021). Service Water Heating. HVAC Applications, Chapter 49, SI Edition.
  • Astudillo-Flores, M., Zalamea-Leon, E., Barragán-Escandón, A., Pelaez-Samaniego, M. R., & Calle-Siguencia, J. (2021). Modelling solar thermal energy for household use in equatorial latitude by using the f-chart model. Renewable Energy and Power Quality Journal, 19, 269–275. https://doi.org/10.24084/repqj19.273
  • Bani Yaseen, A., Al-Hyari, L., Almahmoud, O., & Hammad, M. (2020). Performance of a new solar water heater design with natural circulation. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects (pp. 1–16). Taylor and Francis Inc. https://doi.org/10.1080/15567036.2020.1785590
  • Camargo Nogueira, C. E., Vidotto, M. L., Toniazzo, F., & Debastiani, G. (2016). Software for designing solar water heating systems. In Renewable and Sustainable Energy Reviews (Vol. 58, pp. 361–375). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.346
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. Wiley.
  • Esmaeili, S. M., & Pourmoghadam, P. (2023). Energy exergy and economic evaluation of a CCHP configuration powered by CPVT collectors dynamically. Energy Reports, 9, 6486–6499. https://doi.org/10.1016/j.egyr.2023.06.003
  • Ghabour, R., & Korzenszky, P. (2021). Identifying the optimum tilting angles for solar thermal collectors using four different modelling factors in Hungary. https://www.researchgate.net/publication/363150813
  • Günerhan, H. (2005, November). Bir öğrenci yurdu binası için güneş enerjili ve sıvı yakıtlı sıcak su sistemi tasarımı.
  • Gunerhan, H., & Hepbasli, A. (2007). Exergetic modeling and performance evaluation of solar water heating systems for building applications. Energy and Buildings, 39(5), 509–516. https://doi.org/10.1016/j.enbuild.2006.09.003
  • Hepbaşli, A., Günhan Özcan, H., Günerhan, H., & Yildirim, N. (2019, April). Binaların ekserji bazlı termodinamik analizleri ve değerlendirmeleri.
  • Huang, W., & Marefati, M. (2020). Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids. Energy Reports, 6, 2919–2947. https://doi.org/10.1016/j.egyr.2020.10.021
  • Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55–63. https://doi.org/10.1016/j.renene.2012.10.031
  • Jaluria Y. (1998). Design and Optimization of Thermal Systems. McGraw-Hill.
  • Kacia, K., Merzouk, M., Merzouk, N. K., Missoum, M., El Ganaoui, M., Behar, O., & Djedjig, R. (2023). Design, optimization and economic viability of an industrial low temperature hot water production system in Algeria: A case study. International Journal of Renewable Energy Development, 12(3), 448–458. https://doi.org/10.14710/ijred.2023.49759
  • Kalogirou, S. A., & Florides, G. A. (2016). Solar Space Heating and Cooling Systems☆. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.09701-3
  • Karadağ, B. (2020). Güneş enerjili su ısıtma sisteminin ekserji ve ekonomik analizi [Yüksek Lisans Tezi]. Atatürk üniversitesi fen bilimleri enstitüsü.
  • Kaushik, S. C., & Ranjan, K. R. (2016). Energetic and exergetic performance evaluation of natural circulation solar water heating systems. Applied Solar Energy (English Translation of Geliotekhnika), 52(1), 16–26. https://doi.org/10.3103/S0003701X16010059
  • Klein S.A., B. W. A. , and D. J. A. (1975). A Design Procedure For Solar Heating. Solar Energy, 18, Pp. 113-127, 113–127.
  • Kulkarni, M. V., Deshmukh, D. S., & Shekhawat, S. P. (2020). An innovative design approach of hot water storage tank for solar water heating system using artificial neural network. Materials Today: Proceedings, 46, 5400–5405. https://doi.org/10.1016/j.matpr.2020.09.058
  • Kumar Pathak, S., Tyagi, V. V., Chopra, K., & Kumar Sharma, R. (2022). Recent development in thermal performance of solar water heating (SWH) systems. Materials Today: Proceedings, 63, 778–785. https://doi.org/10.1016/j.matpr.2022.05.502
  • Meteoroloji Genel Müdürlüğü. (2021). The highest temperature values in Mugla between 1928-2021.
  • Murugan, M., Saravanan, A., Elumalai, P. V., Kumar, P., Ahamed Saleel, C., Samuel, O. D., Setiyo, M., Enweremadu, C. C., & Afzal, A. (2022). An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. In Alexandria Engineering Journal (Vol. 61, Issue 10, pp. 8123–8147). Elsevier B.V. https://doi.org/10.1016/j.aej.2022.01.052
  • N. V. Suryanarayana and Öner Arıcı. (2003). Design and Simulation of Thermal Systems: Vol. TJ260.S87. McGraw*Hıll.
  • Okafor, I. F., & Akubue, G. (2012). F-Chart Method for Designing Solar Thermal Water Heating Systems. International Journal of Scientific & Engineering Research, 3(9). http://www.ijser.org
  • Rincón-Quintero, A. D., Del Portillo-Valdés, L. A., Zanabria-Ortigoza, N. D., Sandoval-Rodriguez, C. L., Maradey-Lázaro, J. G., & Castillo-León, N. Y. (2022). Exergy analysis and development of flat plate solar collectors: A Review. IOP Conference Series: Materials Science and Engineering, 1253(1), 012009. https://doi.org/10.1088/1757-899x/1253/1/012009
  • S. Klein, et al. (2012). TRNSYS 17 Manual: A Transient System Simulation Program. http://sel.me.wisc.edu/trnsys
  • Savchenko, O., & Savchenko, Z. (2021). Estimation of Solar Hot Water System Operation for a Residential Building. Energy Engineering and Control Systems, 7(1), 1–6. https://doi.org/10.23939/jeecs2021.01.001
  • Senthil, T. S., Porkodi, M., Ranjith Kumar, R., Vijay Muni, T., Karuna, M. S., & Subbiah, R. (2022). Experimentally Investigating the Flat Plate Solar Water Heating System (FPSWHS) for South Indian Climate. Journal of Physics: Conference Series, 2272(1). https://doi.org/10.1088/1742-6596/2272/1/012010
  • Thangavelu, S. K., Khoo, R. J., & Piraiarasi, C. (2021). Exergy and exergoeconomic analysis of domestic scale solar water heater by the effect of solar collector area. Materials Today: Proceedings, 47, 5004–5010. https://doi.org/10.1016/j.matpr.2021.04.584 Tiwari, A. K., Gupta, S., Joshi, A. K., Raval, F., & Sojitra, M. (2020). TRNSYS simulation of flat plate solar collector based water heating system in Indian climatic condition. Materials Today: Proceedings, 46, 5360–5365. https://doi.org/10.1016/j.matpr.2020.08.794
  • TSE 3817. (1994). General guidelines for solar water heaters. ICS code: 27.160.
  • Widén, J., & Munkhammar, J. (2019). Solar Radiation Theory. In Solar Radiation Theory. Uppsala University. https://doi.org/10.33063/diva-381852
  • Zalamea-León, E., Astudillo-Flores, M., Barragán-Escandón, A., & Peláez-Samaniego, M. R. (2023). Comparative capacities of residential solar thermal systems versus F-chart model predictions and economic potential in an equatorial-latitude country. Energy Reports, 10,2567–2581. https://doi.org/10.1016/j.egyr.2023.09.072

Investigating the long-term performance of solar heating systems: a combined approach of the F-chart and exergy analysis

Yıl 2025, Cilt: 45 Sayı: 2, 149 - 161, 30.10.2025
https://doi.org/10.47480/isibted.1567200

Öz

The F-chart method, a powerful tool for estimating the long-term performance of solar heating systems, can be integrated with exergy analysis to provide insights into design improvements, efficiency enhancements, and overall system performance. This integration, which has yet to be previously investigated, is the focus of this study. It proposes a unique approach that combines the F-chart and exergy analysis with newly defined dimensionless energy (EN) and exergy (EX) numbers. EN assesses the system's ability to meet heating load requirements based on available solar radiation and ambient conditions. At the same time, EX measures the system's efficiency by converting available exergy from the sun into helpful exergy. The analysis used the TRNSYS simulation software on a solar water heating system in Mugla, Turkey. The F-chart method determined the solar energy and exergetic fractions (F and Fex) and evaluated their impacts on EN and EX. For a collector area of 10 m2, the annual F and Fex were computed as 0.57 and 0.71, respectively. The system's energy efficiency follows the EN trend, reaching 85% in January, its lowest point in June, and around 90% in December. It is most efficient in colder and less efficient in warmer months, particularly June and July. Low EX values indicate high exergy efficiency, with a peak of 7.2 in wintertime and a 5.2% exergy efficiency in early summer. The findings have substantial practical implications, offering a clear roadmap for enhancing solar heating systems and igniting further research and development in renewable energy and thermal systems.

Kaynakça

  • Abid, M., Yousef, B. A. A., Assad, M. E., Hepbasli, A., & Saeed, K. (2018). An experimental study of solar thermal system with storage for domestic applications. Journal of Mechanical Engineering and Sciences, 12, 4098–4116. https://doi.org/10.15282/jmes.12.4.2018.09.0355
  • Afzanizam, M., Rosli, M., Shafiq, D., Zaki, M., Rahman, F. A., Sepeai, S., Hamid, N. A., & Nawam, M. Z. (2019). F-Chart Method for Design Domestic Hot Water Heating System in Ayer Keroh Melaka. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal Homepage, 56, 59–67. www.akademiabaru.com/arfmts.html
  • Agyekum, E. B., Ampah, J. D., Khan, T., Giri, N. C., Hussien, A. G., Velkin, V. I., Mehmood, U., & Kamel, S. (2024). Towards a reduction of emissions and cost-savings in homes: Techno-economic and environmental impact of two different solar water heaters. Energy Reports, 11, 963–981. https://doi.org/10.1016/j.egyr.2023.12.063
  • ASHRAE Handbook. (2021). Service Water Heating. HVAC Applications, Chapter 49, SI Edition.
  • Astudillo-Flores, M., Zalamea-Leon, E., Barragán-Escandón, A., Pelaez-Samaniego, M. R., & Calle-Siguencia, J. (2021). Modelling solar thermal energy for household use in equatorial latitude by using the f-chart model. Renewable Energy and Power Quality Journal, 19, 269–275. https://doi.org/10.24084/repqj19.273
  • Bani Yaseen, A., Al-Hyari, L., Almahmoud, O., & Hammad, M. (2020). Performance of a new solar water heater design with natural circulation. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects (pp. 1–16). Taylor and Francis Inc. https://doi.org/10.1080/15567036.2020.1785590
  • Camargo Nogueira, C. E., Vidotto, M. L., Toniazzo, F., & Debastiani, G. (2016). Software for designing solar water heating systems. In Renewable and Sustainable Energy Reviews (Vol. 58, pp. 361–375). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.346
  • Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. Wiley.
  • Esmaeili, S. M., & Pourmoghadam, P. (2023). Energy exergy and economic evaluation of a CCHP configuration powered by CPVT collectors dynamically. Energy Reports, 9, 6486–6499. https://doi.org/10.1016/j.egyr.2023.06.003
  • Ghabour, R., & Korzenszky, P. (2021). Identifying the optimum tilting angles for solar thermal collectors using four different modelling factors in Hungary. https://www.researchgate.net/publication/363150813
  • Günerhan, H. (2005, November). Bir öğrenci yurdu binası için güneş enerjili ve sıvı yakıtlı sıcak su sistemi tasarımı.
  • Gunerhan, H., & Hepbasli, A. (2007). Exergetic modeling and performance evaluation of solar water heating systems for building applications. Energy and Buildings, 39(5), 509–516. https://doi.org/10.1016/j.enbuild.2006.09.003
  • Hepbaşli, A., Günhan Özcan, H., Günerhan, H., & Yildirim, N. (2019, April). Binaların ekserji bazlı termodinamik analizleri ve değerlendirmeleri.
  • Huang, W., & Marefati, M. (2020). Energy, exergy, environmental and economic comparison of various solar thermal systems using water and Thermia Oil B base fluids, and CuO and Al2O3 nanofluids. Energy Reports, 6, 2919–2947. https://doi.org/10.1016/j.egyr.2020.10.021
  • Jafarkazemi, F., & Ahmadifard, E. (2013). Energetic and exergetic evaluation of flat plate solar collectors. Renewable Energy, 56, 55–63. https://doi.org/10.1016/j.renene.2012.10.031
  • Jaluria Y. (1998). Design and Optimization of Thermal Systems. McGraw-Hill.
  • Kacia, K., Merzouk, M., Merzouk, N. K., Missoum, M., El Ganaoui, M., Behar, O., & Djedjig, R. (2023). Design, optimization and economic viability of an industrial low temperature hot water production system in Algeria: A case study. International Journal of Renewable Energy Development, 12(3), 448–458. https://doi.org/10.14710/ijred.2023.49759
  • Kalogirou, S. A., & Florides, G. A. (2016). Solar Space Heating and Cooling Systems☆. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.09701-3
  • Karadağ, B. (2020). Güneş enerjili su ısıtma sisteminin ekserji ve ekonomik analizi [Yüksek Lisans Tezi]. Atatürk üniversitesi fen bilimleri enstitüsü.
  • Kaushik, S. C., & Ranjan, K. R. (2016). Energetic and exergetic performance evaluation of natural circulation solar water heating systems. Applied Solar Energy (English Translation of Geliotekhnika), 52(1), 16–26. https://doi.org/10.3103/S0003701X16010059
  • Klein S.A., B. W. A. , and D. J. A. (1975). A Design Procedure For Solar Heating. Solar Energy, 18, Pp. 113-127, 113–127.
  • Kulkarni, M. V., Deshmukh, D. S., & Shekhawat, S. P. (2020). An innovative design approach of hot water storage tank for solar water heating system using artificial neural network. Materials Today: Proceedings, 46, 5400–5405. https://doi.org/10.1016/j.matpr.2020.09.058
  • Kumar Pathak, S., Tyagi, V. V., Chopra, K., & Kumar Sharma, R. (2022). Recent development in thermal performance of solar water heating (SWH) systems. Materials Today: Proceedings, 63, 778–785. https://doi.org/10.1016/j.matpr.2022.05.502
  • Meteoroloji Genel Müdürlüğü. (2021). The highest temperature values in Mugla between 1928-2021.
  • Murugan, M., Saravanan, A., Elumalai, P. V., Kumar, P., Ahamed Saleel, C., Samuel, O. D., Setiyo, M., Enweremadu, C. C., & Afzal, A. (2022). An overview on energy and exergy analysis of solar thermal collectors with passive performance enhancers. In Alexandria Engineering Journal (Vol. 61, Issue 10, pp. 8123–8147). Elsevier B.V. https://doi.org/10.1016/j.aej.2022.01.052
  • N. V. Suryanarayana and Öner Arıcı. (2003). Design and Simulation of Thermal Systems: Vol. TJ260.S87. McGraw*Hıll.
  • Okafor, I. F., & Akubue, G. (2012). F-Chart Method for Designing Solar Thermal Water Heating Systems. International Journal of Scientific & Engineering Research, 3(9). http://www.ijser.org
  • Rincón-Quintero, A. D., Del Portillo-Valdés, L. A., Zanabria-Ortigoza, N. D., Sandoval-Rodriguez, C. L., Maradey-Lázaro, J. G., & Castillo-León, N. Y. (2022). Exergy analysis and development of flat plate solar collectors: A Review. IOP Conference Series: Materials Science and Engineering, 1253(1), 012009. https://doi.org/10.1088/1757-899x/1253/1/012009
  • S. Klein, et al. (2012). TRNSYS 17 Manual: A Transient System Simulation Program. http://sel.me.wisc.edu/trnsys
  • Savchenko, O., & Savchenko, Z. (2021). Estimation of Solar Hot Water System Operation for a Residential Building. Energy Engineering and Control Systems, 7(1), 1–6. https://doi.org/10.23939/jeecs2021.01.001
  • Senthil, T. S., Porkodi, M., Ranjith Kumar, R., Vijay Muni, T., Karuna, M. S., & Subbiah, R. (2022). Experimentally Investigating the Flat Plate Solar Water Heating System (FPSWHS) for South Indian Climate. Journal of Physics: Conference Series, 2272(1). https://doi.org/10.1088/1742-6596/2272/1/012010
  • Thangavelu, S. K., Khoo, R. J., & Piraiarasi, C. (2021). Exergy and exergoeconomic analysis of domestic scale solar water heater by the effect of solar collector area. Materials Today: Proceedings, 47, 5004–5010. https://doi.org/10.1016/j.matpr.2021.04.584 Tiwari, A. K., Gupta, S., Joshi, A. K., Raval, F., & Sojitra, M. (2020). TRNSYS simulation of flat plate solar collector based water heating system in Indian climatic condition. Materials Today: Proceedings, 46, 5360–5365. https://doi.org/10.1016/j.matpr.2020.08.794
  • TSE 3817. (1994). General guidelines for solar water heaters. ICS code: 27.160.
  • Widén, J., & Munkhammar, J. (2019). Solar Radiation Theory. In Solar Radiation Theory. Uppsala University. https://doi.org/10.33063/diva-381852
  • Zalamea-León, E., Astudillo-Flores, M., Barragán-Escandón, A., & Peláez-Samaniego, M. R. (2023). Comparative capacities of residential solar thermal systems versus F-chart model predictions and economic potential in an equatorial-latitude country. Energy Reports, 10,2567–2581. https://doi.org/10.1016/j.egyr.2023.09.072
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Hourieh Bayramiandanalou 0000-0002-8424-9182

Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 15 Ekim 2024
Kabul Tarihi 2 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 45 Sayı: 2

Kaynak Göster

APA Bayramiandanalou, H. (2025). Investigating the long-term performance of solar heating systems: a combined approach of the F-chart and exergy analysis. Isı Bilimi ve Tekniği Dergisi, 45(2), 149-161. https://doi.org/10.47480/isibted.1567200