Araştırma Makalesi
BibTex RIS Kaynak Göster

ChemEqT: Çok Bileşenli Yakıt-Hava Sistemlerinde Denge Kompozisyonu ve Adyabatik Alev Sıcaklığını Tahmin Etmek İçin Birleşik Bir Hesaplama Aracı

Yıl 2025, Cilt: 45 Sayı: 2, 325 - 334, 30.10.2025
https://doi.org/10.47480/isibted.1716739

Öz

Bu çalışmada ChemEqT, çok bileşenli yakıt-hava gaz karışımlarında kimyasal denge bileşimlerini ve adyabatik alev sıcaklıklarını belirlemek için hem Gibbs serbest enerji minimizasyonunu hem de element potansiyeli yöntemini birleşik bir çerçevede sunan bir hesaplama aracı olarak geliştirilmiştir. ChemEqT, denge yanma hesaplamalarının karmaşıklığını basitleştirmek ve kullanıcılara sistemlerine en uygun sayısal stratejiyi seçme konusunda esneklik sağlamak için tasarlanmıştır. ChemEqT'nin performansı, propan-hava ve metan-hava karışımlarını içeren üç vaka çalışmasıyla doğrulanmıştır. İlk vaka çalışmasında, 10 bileşenin yer aldığı bir propan-hava sisteminin simülasyonları, % 0.32'lik maksimum sapma ve CO₂ için % 0.77'nin altında molar bileşen sapmaları ile adiabatik alev sıcaklığı tahminleri üretmiştir. İkinci vaka çalışmasında, maksimum sapmanın % 0.04'ün altında olduğu 52 bileşen kullanılarak hidrojenle zenginleştirilmiş metan-hava karışımları incelenmiştir. Üçüncü vaka, C₃H₆–hava için % 0.146'nın altında sapmalarla 10 farklı yakıt-hava karışımı için aybatik alev sıcaklığı tahminlerini içerir. Bu sonuçlar, ChemEqT'yi daha geniş enerji proses simülasyon çerçevelerine entegrasyon için güçlü bir potansiyele sahip, denge tabanlı yanma analizi için güvenilir ve verimli bir araç olarak göstermektedir. ChemEqT doğruluğu, modülerliği ve hesaplama verimliliği ile, yanma ve enerji sistemleri alanlarında çalışan araştırmacılar için değerli bir hesaplama aracı olarak kullanılabildiği belirlenmiştir.

Kaynakça

  • Annamalai, K., & Puri, I. K. (2006). Combustion science and engineering. CRC press.
  • Aoki, H., & Miura, T. (1995). Combustion Engineering and Thermophysical Properties on Combustion. Netsu Bussei, 9(1), 30-35. https://doi.org/10.2963/jjtp.9.30
  • Bhattacharya, P., Li, Q., Lacroix, D., Kadirkamanathan, V., & Viceconti, M. (2021). A systematic approach to the scale separation problem in the development of multiscale models. PLoS One, 16(5), e0251297. https://doi.org/10.1371/journal.pone.0251297
  • Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES. The Astrophysical Journal Supplement Series, 225(1), 4. https://doi.org/10.3847/0067-0049/225/1/4
  • Borgnakke, C., & Sonntag, R. E. (2020). Fundamentals of thermodynamics. John Wiley & Sons.
  • Boushaki, T., Dhué, Y., Selle, L., Ferret, B., & Poinsot, T. (2012). Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: Experimental and numerical analysis. International Journal of Hydrogen Energy, 37(11), 9412-9422. https://doi.org/https://doi.org/10.1016/j.ijhydene.2012.03.037
  • Burcat, A., & Ruscic, B. (2005). Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. https://doi.org/10.2172/925269
  • Camberos, J., & Moubry, J. (2001). Chemical equilibrium analysis with the method of element potentials. https://doi.org/10.2514/6.2001-873
  • Cantwell, B. J. (2022). Aircraft and rocket propulsion. AA283 course.
  • Cuadra, A., Huete, C., & Vera, M. (2024). Combustion Toolbox: An open-source thermochemical code for gas- and condensed-phase problems involving chemical equilibrium.
  • Eriksson, L. (2004). CHEPP - A Chemical Equilibrium Program Package for Matlab. https://doi.org/10.4271/2004-01-1460
  • Gibbons, N. N. (2024). equilibrium-c: A Lightweight Modern Equilibrium Chemistry Calculator for Hypersonic Flow Applications. arXiv preprint arXiv:2412.07166.
  • Glassman, I., & Yetter, R. A. (2008). Combustion. Elsevier Science. https://books.google.com.tr/books?id=XGILM-Q2JdsC
  • Goodwin, D. G., Speth, R. L., Moffat, H. K., & Weber, B. W. (2021). Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Zenodo. https://doi.org/10.5281/zenodo.4527812
  • Gordon, S., & McBride, B. J. (1994). Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis.
  • Gray, J., Chin, J., Hearn, T., Hendricks, E., Lavelle, T., & Martins, J. R. R. A. (2017). Chemical-Equilibrium Analysis with Adjoint Derivatives for Propulsion Cycle Analysis. Journal of Propulsion and Power, 33(5), 1041-1052. https://doi.org/10.2514/1.B36215
  • Hoffman, J. D., & Frankel, S. (2001). Numerical Methods for Engineers and Scientists, Second Edition. Taylor & Francis. https://books.google.com.tr/books?id=VKs7Afjkng4C
  • Kee, R., Coltrin, M., Glarborg, P., & Zhu, H. (2017). Chemically Reacting Flow: Theory, Modeling, and Simulation. https://doi.org/10.1002/9781119186304
  • Kropotova, S., Dorokhov, V., Sviridenko, A., & Strizhak, P. (2023). Composition of the Gas-Air Mixture in the Containment and Suppression of Forest Fires with Promising Extinguishing Agents. Forests, 14(4), 786. https://www.mdpi.com/1999-4907/14/4/786
  • Kuo, K. K. (1986). Principles of combustion.
  • Law, C. K. (2010). Combustion Physics. Cambridge University Press. https://books.google.com.tr/books?id=vWgJvKMXwQ8C
  • Marzouk, O. (2021). Assessment of Three Databases for the NASA Seven-Coefficient Polynomial Fits for Calculating Thermodynamic Properties of Individual Species. https://doi.org/10.48550/arXiv.2108.05444
  • McBride, B. J. (1993). Coefficients for calculating thermodynamic and transport properties of individual species (Vol. 4513). NASA Langley Research Center.
  • McBride, B. J. (1996). Computer program for calculation of complex chemical equilibrium compositions and applications (Vol. 2). NASA Lewis Research Center.
  • McBride, B. J. (2002). NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration, John H. Glenn Research Center ….
  • Olikara, C., & Borman, G. L. (1975). A computer program for calculating properties of equilibrium combustion products with some applications to IC engines (0148-7191).
  • Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards, Inc.
  • Pratt, D. T., & Wormeck, J. J. (1976). CREK-A Computer Program for Calculation of Combustion Reaction Equilibrium and Kinetics in Laminar or Turbulent Flow. Thermal Energy Laboratory, Department of Mechanical Engineering, Washington ….
  • Price, K. V. (2013). Differential Evolution. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Handbook of Optimization: From Classical to Modern Approach (pp. 187-214). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_8
  • Rashidi, M. (1998). Calculation of equilibrium composition in combustion products. Applied Thermal Engineering, 18(3), 103-109. https://doi.org/10.1016/S1359-4311(97)87533-3
  • Reynolds, W. C. (1986). The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Technical Rept.
  • Safarian, S., Rydén, M., & Janssen, M. (2022). Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling. Energies, 15(11), 3999. https://www.mdpi.com/1996-1073/15/11/3999
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., & Gardiner Jr, W. (2021). GRI-MECH 3.0. sn. Accessed 25 May. http://combustion.berkeley.edu/gri-mech.
  • Tosun, I. (2021). The thermodynamics of phase and reaction equilibria. Elsevier.
  • Tsanas, C., Stenby, E. H., & Yan, W. (2017). Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers. Chemical Engineering Science, 174, 112-126. https://doi.org/10.1016/j.ces.2017.08.033
  • Turns, S. R. (2011). An Introduction to Combustion: Concepts and Applications. McGraw-Hill Education. https://books.google.com.tr/books?id=RXSdcQAACAAJ
  • Walter, M. A. T., & Owen, P. R. (2014). Element Potential-Based Procedure for Metamodeling of Combustion Products. Journal of Propulsion and Power, 30(6), 1711-1720. https://doi.org/10.2514/1.B35189
  • Westbrook, C. K., Mizobuchi, Y., Poinsot, T. J., Smith, P. J., & Warnatz, J. (2005). Computational combustion. Proceedings of the Combustion Institute, 30(1), 125-157. https://doi.org/10.1016/j.proci.2004.08.275
  • Williams, F. (2018). Combustion theory: The fundamental theory of chemically reacting flow systems, second edition. https://doi.org/10.1201/9780429494055
  • Zeleznik, F. J., & Gordon, S. (1960). An analytical investigation of three general methods of calculating chemical-equilibrium compositions. National Aeronautics and Space Administration.

ChemEqT: A Unified Computational Tool for Predicting Equilibrium Composition and Adiabatic Flame Temperature in Multicomponent Fuel–Air Systems

Yıl 2025, Cilt: 45 Sayı: 2, 325 - 334, 30.10.2025
https://doi.org/10.47480/isibted.1716739

Öz

This study presents ChemEqT, a computational tool that integrates both Gibbs free energy minimization and the element potential method within a unified framework for determining chemical equilibrium compositions and adiabatic flame temperatures in multicomponent fuel–air gas mixtures. ChemEqT is designed to simplify the complexity of equilibrium combustion calculations and provides users with flexibility in selecting the numerical strategy best suited to their system. The performance of ChemEqT is validated through three case studies involving propane–air and methane–air mixtures. In the first case, simulations of a propane–air system involving 10 species yielded adiabatic flame temperature predictions with a maximum deviation of 0.32% and molar species deviations below 0.77% for CO₂. The second case examines methane–air mixtures enriched with hydrogen, using 52 species, where the maximum deviation was under 0.04%. The third case involves adiabtic flame temperature predictions for 10 different fuel–air mixtures, with deviations below 0.146% for C₃H₆–air. These results establish ChemEqT as a reliable and efficient tool for equilibrium-based combustion analysis, with strong potential for integration into broader energy process simulation frameworks. Its accuracy, modularity, and computational efficiency make it a valuable asset for researchers working in the fields of combustion and energy systems.

Kaynakça

  • Annamalai, K., & Puri, I. K. (2006). Combustion science and engineering. CRC press.
  • Aoki, H., & Miura, T. (1995). Combustion Engineering and Thermophysical Properties on Combustion. Netsu Bussei, 9(1), 30-35. https://doi.org/10.2963/jjtp.9.30
  • Bhattacharya, P., Li, Q., Lacroix, D., Kadirkamanathan, V., & Viceconti, M. (2021). A systematic approach to the scale separation problem in the development of multiscale models. PLoS One, 16(5), e0251297. https://doi.org/10.1371/journal.pone.0251297
  • Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES. The Astrophysical Journal Supplement Series, 225(1), 4. https://doi.org/10.3847/0067-0049/225/1/4
  • Borgnakke, C., & Sonntag, R. E. (2020). Fundamentals of thermodynamics. John Wiley & Sons.
  • Boushaki, T., Dhué, Y., Selle, L., Ferret, B., & Poinsot, T. (2012). Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: Experimental and numerical analysis. International Journal of Hydrogen Energy, 37(11), 9412-9422. https://doi.org/https://doi.org/10.1016/j.ijhydene.2012.03.037
  • Burcat, A., & Ruscic, B. (2005). Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. https://doi.org/10.2172/925269
  • Camberos, J., & Moubry, J. (2001). Chemical equilibrium analysis with the method of element potentials. https://doi.org/10.2514/6.2001-873
  • Cantwell, B. J. (2022). Aircraft and rocket propulsion. AA283 course.
  • Cuadra, A., Huete, C., & Vera, M. (2024). Combustion Toolbox: An open-source thermochemical code for gas- and condensed-phase problems involving chemical equilibrium.
  • Eriksson, L. (2004). CHEPP - A Chemical Equilibrium Program Package for Matlab. https://doi.org/10.4271/2004-01-1460
  • Gibbons, N. N. (2024). equilibrium-c: A Lightweight Modern Equilibrium Chemistry Calculator for Hypersonic Flow Applications. arXiv preprint arXiv:2412.07166.
  • Glassman, I., & Yetter, R. A. (2008). Combustion. Elsevier Science. https://books.google.com.tr/books?id=XGILM-Q2JdsC
  • Goodwin, D. G., Speth, R. L., Moffat, H. K., & Weber, B. W. (2021). Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Zenodo. https://doi.org/10.5281/zenodo.4527812
  • Gordon, S., & McBride, B. J. (1994). Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis.
  • Gray, J., Chin, J., Hearn, T., Hendricks, E., Lavelle, T., & Martins, J. R. R. A. (2017). Chemical-Equilibrium Analysis with Adjoint Derivatives for Propulsion Cycle Analysis. Journal of Propulsion and Power, 33(5), 1041-1052. https://doi.org/10.2514/1.B36215
  • Hoffman, J. D., & Frankel, S. (2001). Numerical Methods for Engineers and Scientists, Second Edition. Taylor & Francis. https://books.google.com.tr/books?id=VKs7Afjkng4C
  • Kee, R., Coltrin, M., Glarborg, P., & Zhu, H. (2017). Chemically Reacting Flow: Theory, Modeling, and Simulation. https://doi.org/10.1002/9781119186304
  • Kropotova, S., Dorokhov, V., Sviridenko, A., & Strizhak, P. (2023). Composition of the Gas-Air Mixture in the Containment and Suppression of Forest Fires with Promising Extinguishing Agents. Forests, 14(4), 786. https://www.mdpi.com/1999-4907/14/4/786
  • Kuo, K. K. (1986). Principles of combustion.
  • Law, C. K. (2010). Combustion Physics. Cambridge University Press. https://books.google.com.tr/books?id=vWgJvKMXwQ8C
  • Marzouk, O. (2021). Assessment of Three Databases for the NASA Seven-Coefficient Polynomial Fits for Calculating Thermodynamic Properties of Individual Species. https://doi.org/10.48550/arXiv.2108.05444
  • McBride, B. J. (1993). Coefficients for calculating thermodynamic and transport properties of individual species (Vol. 4513). NASA Langley Research Center.
  • McBride, B. J. (1996). Computer program for calculation of complex chemical equilibrium compositions and applications (Vol. 2). NASA Lewis Research Center.
  • McBride, B. J. (2002). NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration, John H. Glenn Research Center ….
  • Olikara, C., & Borman, G. L. (1975). A computer program for calculating properties of equilibrium combustion products with some applications to IC engines (0148-7191).
  • Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards, Inc.
  • Pratt, D. T., & Wormeck, J. J. (1976). CREK-A Computer Program for Calculation of Combustion Reaction Equilibrium and Kinetics in Laminar or Turbulent Flow. Thermal Energy Laboratory, Department of Mechanical Engineering, Washington ….
  • Price, K. V. (2013). Differential Evolution. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Handbook of Optimization: From Classical to Modern Approach (pp. 187-214). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30504-7_8
  • Rashidi, M. (1998). Calculation of equilibrium composition in combustion products. Applied Thermal Engineering, 18(3), 103-109. https://doi.org/10.1016/S1359-4311(97)87533-3
  • Reynolds, W. C. (1986). The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Technical Rept.
  • Safarian, S., Rydén, M., & Janssen, M. (2022). Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling. Energies, 15(11), 3999. https://www.mdpi.com/1996-1073/15/11/3999
  • Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., & Gardiner Jr, W. (2021). GRI-MECH 3.0. sn. Accessed 25 May. http://combustion.berkeley.edu/gri-mech.
  • Tosun, I. (2021). The thermodynamics of phase and reaction equilibria. Elsevier.
  • Tsanas, C., Stenby, E. H., & Yan, W. (2017). Calculation of simultaneous chemical and phase equilibrium by the method of Lagrange multipliers. Chemical Engineering Science, 174, 112-126. https://doi.org/10.1016/j.ces.2017.08.033
  • Turns, S. R. (2011). An Introduction to Combustion: Concepts and Applications. McGraw-Hill Education. https://books.google.com.tr/books?id=RXSdcQAACAAJ
  • Walter, M. A. T., & Owen, P. R. (2014). Element Potential-Based Procedure for Metamodeling of Combustion Products. Journal of Propulsion and Power, 30(6), 1711-1720. https://doi.org/10.2514/1.B35189
  • Westbrook, C. K., Mizobuchi, Y., Poinsot, T. J., Smith, P. J., & Warnatz, J. (2005). Computational combustion. Proceedings of the Combustion Institute, 30(1), 125-157. https://doi.org/10.1016/j.proci.2004.08.275
  • Williams, F. (2018). Combustion theory: The fundamental theory of chemically reacting flow systems, second edition. https://doi.org/10.1201/9780429494055
  • Zeleznik, F. J., & Gordon, S. (1960). An analytical investigation of three general methods of calculating chemical-equilibrium compositions. National Aeronautics and Space Administration.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nuri Özgür Aydın 0000-0001-9327-5975

Mehmet Kopaç 0000-0002-4863-1827

Yayımlanma Tarihi 30 Ekim 2025
Gönderilme Tarihi 17 Haziran 2025
Kabul Tarihi 18 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 45 Sayı: 2

Kaynak Göster

APA Aydın, N. Ö., & Kopaç, M. (2025). ChemEqT: A Unified Computational Tool for Predicting Equilibrium Composition and Adiabatic Flame Temperature in Multicomponent Fuel–Air Systems. Isı Bilimi ve Tekniği Dergisi, 45(2), 325-334. https://doi.org/10.47480/isibted.1716739