Araştırma Makalesi
BibTex RIS Kaynak Göster

Fenarimol'e Maruz Kalan Sıçanların Çeşitli Dokularında LDH Aktivitesindeki Değişiklikler

Yıl 2025, Cilt: 6 Sayı: 1, 73 - 85, 30.06.2025

Öz

Fenarimol, özellikle üzüm bağlarında mantar hastalıklarıyla mücadelede kullanılan, meyve ve sebze yetiştiriciliğinde yaygın şekilde tercih edilen bir fungisittir. Hem östrojenik hem de antiandrojenik aktivite gösteren bu bileşik, gama-glutamiltransferaz, glikoz-6-fosfataz ve alkali fosfataz gibi önemli enzimler üzerinde etkili olabilmektedir. Bu çalışmada ise laktat dehidrogenaz (LDH) enzimi ele alınmıştır.
Fenarimol, LD₅₀ dozu olan 200mg kg-1 düzeyinde, erkek ve dişi sıçanlara intraperitoneal olarak uygulanmıştır. Uygulamayı takiben 2, 4, 8, 16, 32, 64. ve 72. saatlerde sıçanların karaciğer, böbrek, beyin ve ince bağırsak dokularından alınan örneklerde LDH enzim aktivitesindeki değişimler belirlenmiştir.
Elde edilen bulgular, Fenarimol uygulamasının incelenen tüm dokularda LDH aktivitesini artırdığını göstermiştir. Bu artış, her iki cinsiyette de 72. saate doğru azalma eğilimi göstermiştir. LDH aktivitesindeki bu artışların, ilgili dokularda hücresel hasar meydana geldiğine işaret ettiği düşünülmektedir.

Proje Numarası

F(U)-2003/65

Kaynakça

  • [1] FAO, Statistical yearbook, world food and agriculture 2023. Food and agriculture organization of the United Nations Rome, (2023a). ISBN 978-92-5-138262-2 https://doi.org/10.4060/cc8166en
  • [2] Yılmaz A.M., Tomar O., Çağlar A. Evaluatıon of pesticide use and trade in Turkey. 8th international new york conference on evolving trends in interdisciplinary research & practices. Conference paper, Manhattan, New York City, May 1-3, (2023). https://www.researchgate.net/publication/377241148
  • [3] Özercan B., Taşcı R. Türkiye’de pestisit kullanımının iller, bölgeler ve pestisit grupları açısından incelenmesi. Ziraat mühendisliği 375, 75-88, (2022). https://doi.org/10.33724/zm.1120599
  • [4] Kuruta B., Kilin M. Pestisitlerin biyolojik sistemler üzerine etkisi. Arşiv kaynak tarama dergisi, 12:3, 215–228, (2003). https://doi.org/10.17827/aktd.33853
  • [5] Siegel M.R. Sterol inhibiting fungicides: Effects on sterol biosynthesis and sites of action. Plant diseases, 65:12, 986-989, (1981). https://doi.org/10.1094/PD-65-986
  • [6] Stenzel K., Vors J.P. Sterol Biosynthesis Inhibitors In book: Modern Crop Protection Compounds, (2019). doi:10.1002/9783527699261.ch19
  • [7] Paolini M., Mesirca R., Pozzetti L., Maffei F., Vigagni F., Hrelia P., Cantelli-Forti, G. Genetic and non-genetic biomarkers related to carcinogenesis in evaluating toxicological risk from Fenarimol, Mutation Research, 368, 27-39, (1996a). https://doi.org/10.1016/s0165-1218(96)90037-3.
  • [8] Sanderson J.T., Boerma J., Lansbergen G.W.A., van den Berg M., Induction and Inhibition of Aromatase (CYP19) Activity by Various Classes of Pesticides in H295R Human Adrenocortical Carcinoma Cells. Toxicology and Applied Pharmacology 182:1, 44-54, (2002).
  • [9] Andersen H.R., Bonefeld-Jørgensen E.C., Nielsen F., Jarfeldt K. Estrogen effects in vitro and in vivo of the fungicide fenarimol. Toxicology Letters 163:2, 142-152, (2006). doi:10.1016/j.toxlet.2005.10.004
  • [10] Han J., Park M., Won M., Kim J-H., Ko J.J., Bae, J. Transgeneration Effects of Fenarimol on Reproductive Health in Female Mice. Biology of Reproduction 78:1, 115, (2008). doi:10.1093/biolreprod/78.s1.115
  • [11] WHO FAO Plant Production and Protection Paper, 133, 1996 - Pesticide residues in food. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and WHO Toxicological and Environmental Core Assessment, (1995)
  • [12] Bellisai G., Bernasconi G., Binaglia M., Cabrera L.C., Castellan I., Castoldi A.F., Chiusolo A., Crivellente F., Aguila M.D., Ferreira L., Santonj, G.G., Greco L., Istace F., Jarrah S., Lanzoni A., Leuschner R., Mangas I., Miron I., Nave S., Panzarea M., Morte J.M.P., Pedersen R., Reich H., Ruocco S., Santos M., Scarlato A.P., Terron A., Theobald A., Tiramani M., Verani A., Targeted review of maximum residue levels (MRLs) for fenarimol. European Food Safety Authority. Open Access. (2023). doi.org/10.2903/j.efsa.2023.8113 [13] Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise. Nature metabolism, 2, 817–828, (2020). https://doi.org/10.1038/s42255-020-0251-4
  • [14] Bradford M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72:1-2, 248–254, (1976). https://doi.org/10.1006/ABIO.1976.9999
  • [15] Klein R., Nagy O., Tóthová C. Chovanová F. Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Veterinary medicine international, 11. Article ID 5346483, (2020). https://doi.org/10.1155/2020/5346483
  • [16] Hodges R.S. Boehringer Mannheim award lecture 1995. La conference Boehringer Mannheim 1995. De novo design of alpha-helical proteins: basic research to medical applications. Biochemistry and cell biology = Biochimie et biologie cellulaire, 74:2, 133-154, (1996). https://doi.org/10.1139/O96-015
  • [17] Ivanov M., Ciric,A., Stojkovic D. Emerging Antifungal Targets and Strategies. International journal of molecular sciences, 23, 2756, (2022) https://doi.org/10.3390/ijms23052756
  • [18] Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M., Storey K.B. Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101-1136, (2018). https://doi.org/10.17179/excli2018-1710
  • [19] EPA, Fenarimol summary, United State Environmental Protection Agency. Docket Number: EPA-HQ-OPP-2006-0241, (2007). www.regulations.gov
  • [20] Özcelebi H., Ari F., Dere E. Glutathione S-transferase activity in tissues of rats exposed to fenarimol. Brazilian archives of biology and technology, 64, 1-8, (2021). https://doi.org/10.1590/1678-4324-2021200751
  • [21] Ahmed F.A.M., Zein A.A., Tag El-Din, M.H., El-naggar J.B. Toxicological studies of some pesticides on certain vegetable crops pests. III-Side effects of some compounds used to control certain vegetable crops pests on white rats. Journal of agricultural sciences, 27:12, 8645-8654, (2002). https://doi.org/10.21608/jppp.2002.256220
  • [22] Kori R.K., Singh M.K., Jain A.K., Yadav R.S. Neurochemical and behavioral dysfunctions in pesticide exposed farm workers: A clinical outcome. Indian journal of clinical biochemistry, 33:4, 372-381, (2018). https://doi.org/10.1007/s12291-018-0791-5
  • [23] Giambò F., Teodoro M., Costa C., Fenga C. Toxicology and microbiota: How do pesticides influence gut microbiota? a review. International journal of environmental research and public health, 18:11, 5510, (2021). https://doi.org/10.3390/ijerph18115510
  • [24] Arı F., Dere E., Tosunoglu H. The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats. Türkiye tarımsal araştırmalar dergisi, 4:3, 275-280, (2017). https://doi.org/10.19159/tutad.310371
  • [25] Arı F., Dere E. Effect of the sterol demethylation-inhibiting fungicide fenarimol on selected biochemical parameters in rats. Acta veterinaria, 60:1, 31-38, (2010). https://doi.org/10.2298/AVB1001031A
  • [26] Jain M., Nagar P., Sharma A., Batth R., Aggarwal S., Kumari S., Mustafiz A. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Scientific reports, 8:1, (2018). https://doi.org/10.1038/s41598-018-23806-4
  • [27] Karaca M., Martin-Levilain J., Grimaldi M., Li L., Dizin E., Emre Y., Maechler P. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid-derived gluconeogenesis and ammonia homeostasis. Diabetes, 67:10, 1949-1961, (2018). https://doi.org/10.2337/db17-1561
  • [28] Valvona C.J., Fillmore H.L., Nunn P.B., Pilkington G.J. The regulation and function of lactate dehydrogenase A: Therapeutic potential in brain tumor. Brain Pathalogy, 26:1, 3-17, (2016). https://doi.org/10.1111/bpa.12299
  • [29] Poli P., de Mello M.A., Buschini A., de Castro V.L.S.S., Restivo F.M., Rossi C., Zucchi T.M.A.D. Evaluation of the genotoxicity induced by the fungicide fenarimol in mammalian and plant cells by use of the single-cell gel electrophoresis assay. Mutation Research, 9;540:1 57-66, (2003). https://doi.org/10.1016/s1383-5718(03)00165-7
  • [30] Paolini M., Pozzetti L., Mesirca R., Sapone A., Cantelli-Forti G. Testosterone hydroxylase in evaluating induction and suppression of murine CYP isoenzymes by fenarimol. Archives of Toxicology 70, 451–456, (1996b). [Medline] [CrossRef]
  • [31] Grilli S., Ancora G., Rani P., Valenti A.M., Mazzullo M., Colacci A. In vivo unwinding fluorimetric assay as evidence of the damage induced by fenarimol and DNOC in rat liver DNA, Journal of toxicology and environmental health, 34, 485-494, (1991). https://doi.org/10.1080/15287399109531584
  • [32] de Castroa VLSS, de Mello MA, Poli, P., Zucchi T.M.A.D. Prenatal and perinatal fenarimol-induced genotoxicity in leukocytes of in vivo treated rats Mutation Research 583, 95-104, (2005) doi:10.1016/j.mrgentox.2005.02.001
  • [33] Hai D.Q., Varga S.I., Matkovics B. Organophosphate Effects on Antioxidant System of Carp (Cyprinus carpio) and Catfish (Ictalurus nebulosus). Biochemistry, 117:1, 83-89, (1997). https://doi.org/10.1016/s0742-8413(96)00234-4.
  • [34] Ojha A., Yaduvanshi S.K., Pant S.C., Lomash V., Srivastava N. Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environmental toxicology, 28:10, 543-552, (2013). https://doi.org/10.1002/tox.20748
  • [35] FAO, The state of food security and nutrition in the World. Urbanization, agrifood systems transformation and healthy dıets across the rural–urban continuum. Food and agriculture organization of the United Nations, International fund for agricultural development, United nations children’s fund, world food programme, World health organization, Rome, (2023b). ISBN 978-92-5-137226-5

The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol

Yıl 2025, Cilt: 6 Sayı: 1, 73 - 85, 30.06.2025

Öz

Fenarimol is a fungicide widely used in fruit and vegetable cultivation, particularly in vineyards, to combat fungal diseases. Exhibiting both estrogenic and antiandrogenic activities, this compound also influences several key enzymes, including gamma-glutamyltransferase, glucose-6-phosphatase, and alkaline phosphatase. In the present study, the enzyme lactate dehydrogenase (LDH) was selected as a biochemical marker to evaluate tissue-specific effects of Fenarimol exposure.
Fenarimol was administered intraperitoneally to both male and female rats at its LD₅₀ dose (200 mg/kg). Following administration, changes in LDH enzyme activity were assessed in liver, kidney, brain, and small intestine tissues at various time intervals: 2, 4, 8, 16, 32, 64, and 72 hours.
The results indicated a significant increase in LDH activity in all examined tissues post-exposure. However, this elevated enzyme activity gradually declined toward the 72-hour mark in both sexes. These increases in LDH activity suggest that Fenarimol induces notable tissue damage, reflecting its toxicological impact on vital organs.

Etik Beyan

Bu çalışmada kullanılan tüm hayvan deneyleri, Bursa Uludağ Üniversitesi Hayvan Deneyleri Etik Kurulu’nun onayı ile gerçekleştirilmiştir (3. 06. 2003/3]. Deneyler sırasında hayvan refahı, 6343 sayılı Veteriner Hizmetleri, Bitki Sağlığı, Gıda ve Yem Kanunu ve ilgili yönetmeliklere uygun olarak sağlanmıştır. Tüm prosedürler, hayvanların gereksiz yere acı çekmesini önleyecek şekilde planlanmış ve uygulanmıştır.

Destekleyen Kurum

Bu çalışma Bursa Uludağ Üniversitesi Bilimsel Araştırma Fonu tarafından desteklenmiştir. F(U)-2003/65

Proje Numarası

F(U)-2003/65

Teşekkür

Çalışmaya katkılarından dolayı Sayın Ferda Arı ve Hakan Tosunoğlu'na teşekkür ederim

Kaynakça

  • [1] FAO, Statistical yearbook, world food and agriculture 2023. Food and agriculture organization of the United Nations Rome, (2023a). ISBN 978-92-5-138262-2 https://doi.org/10.4060/cc8166en
  • [2] Yılmaz A.M., Tomar O., Çağlar A. Evaluatıon of pesticide use and trade in Turkey. 8th international new york conference on evolving trends in interdisciplinary research & practices. Conference paper, Manhattan, New York City, May 1-3, (2023). https://www.researchgate.net/publication/377241148
  • [3] Özercan B., Taşcı R. Türkiye’de pestisit kullanımının iller, bölgeler ve pestisit grupları açısından incelenmesi. Ziraat mühendisliği 375, 75-88, (2022). https://doi.org/10.33724/zm.1120599
  • [4] Kuruta B., Kilin M. Pestisitlerin biyolojik sistemler üzerine etkisi. Arşiv kaynak tarama dergisi, 12:3, 215–228, (2003). https://doi.org/10.17827/aktd.33853
  • [5] Siegel M.R. Sterol inhibiting fungicides: Effects on sterol biosynthesis and sites of action. Plant diseases, 65:12, 986-989, (1981). https://doi.org/10.1094/PD-65-986
  • [6] Stenzel K., Vors J.P. Sterol Biosynthesis Inhibitors In book: Modern Crop Protection Compounds, (2019). doi:10.1002/9783527699261.ch19
  • [7] Paolini M., Mesirca R., Pozzetti L., Maffei F., Vigagni F., Hrelia P., Cantelli-Forti, G. Genetic and non-genetic biomarkers related to carcinogenesis in evaluating toxicological risk from Fenarimol, Mutation Research, 368, 27-39, (1996a). https://doi.org/10.1016/s0165-1218(96)90037-3.
  • [8] Sanderson J.T., Boerma J., Lansbergen G.W.A., van den Berg M., Induction and Inhibition of Aromatase (CYP19) Activity by Various Classes of Pesticides in H295R Human Adrenocortical Carcinoma Cells. Toxicology and Applied Pharmacology 182:1, 44-54, (2002).
  • [9] Andersen H.R., Bonefeld-Jørgensen E.C., Nielsen F., Jarfeldt K. Estrogen effects in vitro and in vivo of the fungicide fenarimol. Toxicology Letters 163:2, 142-152, (2006). doi:10.1016/j.toxlet.2005.10.004
  • [10] Han J., Park M., Won M., Kim J-H., Ko J.J., Bae, J. Transgeneration Effects of Fenarimol on Reproductive Health in Female Mice. Biology of Reproduction 78:1, 115, (2008). doi:10.1093/biolreprod/78.s1.115
  • [11] WHO FAO Plant Production and Protection Paper, 133, 1996 - Pesticide residues in food. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and WHO Toxicological and Environmental Core Assessment, (1995)
  • [12] Bellisai G., Bernasconi G., Binaglia M., Cabrera L.C., Castellan I., Castoldi A.F., Chiusolo A., Crivellente F., Aguila M.D., Ferreira L., Santonj, G.G., Greco L., Istace F., Jarrah S., Lanzoni A., Leuschner R., Mangas I., Miron I., Nave S., Panzarea M., Morte J.M.P., Pedersen R., Reich H., Ruocco S., Santos M., Scarlato A.P., Terron A., Theobald A., Tiramani M., Verani A., Targeted review of maximum residue levels (MRLs) for fenarimol. European Food Safety Authority. Open Access. (2023). doi.org/10.2903/j.efsa.2023.8113 [13] Hargreaves M., Spriet L.L. Skeletal muscle energy metabolism during exercise. Nature metabolism, 2, 817–828, (2020). https://doi.org/10.1038/s42255-020-0251-4
  • [14] Bradford M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72:1-2, 248–254, (1976). https://doi.org/10.1006/ABIO.1976.9999
  • [15] Klein R., Nagy O., Tóthová C. Chovanová F. Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Veterinary medicine international, 11. Article ID 5346483, (2020). https://doi.org/10.1155/2020/5346483
  • [16] Hodges R.S. Boehringer Mannheim award lecture 1995. La conference Boehringer Mannheim 1995. De novo design of alpha-helical proteins: basic research to medical applications. Biochemistry and cell biology = Biochimie et biologie cellulaire, 74:2, 133-154, (1996). https://doi.org/10.1139/O96-015
  • [17] Ivanov M., Ciric,A., Stojkovic D. Emerging Antifungal Targets and Strategies. International journal of molecular sciences, 23, 2756, (2022) https://doi.org/10.3390/ijms23052756
  • [18] Lushchak V.I., Matviishyn T.M., Husak V.V., Storey J.M., Storey K.B. Pesticide toxicity: A mechanistic approach. EXCLI Journal, 17, 1101-1136, (2018). https://doi.org/10.17179/excli2018-1710
  • [19] EPA, Fenarimol summary, United State Environmental Protection Agency. Docket Number: EPA-HQ-OPP-2006-0241, (2007). www.regulations.gov
  • [20] Özcelebi H., Ari F., Dere E. Glutathione S-transferase activity in tissues of rats exposed to fenarimol. Brazilian archives of biology and technology, 64, 1-8, (2021). https://doi.org/10.1590/1678-4324-2021200751
  • [21] Ahmed F.A.M., Zein A.A., Tag El-Din, M.H., El-naggar J.B. Toxicological studies of some pesticides on certain vegetable crops pests. III-Side effects of some compounds used to control certain vegetable crops pests on white rats. Journal of agricultural sciences, 27:12, 8645-8654, (2002). https://doi.org/10.21608/jppp.2002.256220
  • [22] Kori R.K., Singh M.K., Jain A.K., Yadav R.S. Neurochemical and behavioral dysfunctions in pesticide exposed farm workers: A clinical outcome. Indian journal of clinical biochemistry, 33:4, 372-381, (2018). https://doi.org/10.1007/s12291-018-0791-5
  • [23] Giambò F., Teodoro M., Costa C., Fenga C. Toxicology and microbiota: How do pesticides influence gut microbiota? a review. International journal of environmental research and public health, 18:11, 5510, (2021). https://doi.org/10.3390/ijerph18115510
  • [24] Arı F., Dere E., Tosunoglu H. The Effects of Fenarimol and Methyl Parathion on Glucose 6-Phosphate Dehydrogenase Enzyme Activity in Rats. Türkiye tarımsal araştırmalar dergisi, 4:3, 275-280, (2017). https://doi.org/10.19159/tutad.310371
  • [25] Arı F., Dere E. Effect of the sterol demethylation-inhibiting fungicide fenarimol on selected biochemical parameters in rats. Acta veterinaria, 60:1, 31-38, (2010). https://doi.org/10.2298/AVB1001031A
  • [26] Jain M., Nagar P., Sharma A., Batth R., Aggarwal S., Kumari S., Mustafiz A. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Scientific reports, 8:1, (2018). https://doi.org/10.1038/s41598-018-23806-4
  • [27] Karaca M., Martin-Levilain J., Grimaldi M., Li L., Dizin E., Emre Y., Maechler P. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid-derived gluconeogenesis and ammonia homeostasis. Diabetes, 67:10, 1949-1961, (2018). https://doi.org/10.2337/db17-1561
  • [28] Valvona C.J., Fillmore H.L., Nunn P.B., Pilkington G.J. The regulation and function of lactate dehydrogenase A: Therapeutic potential in brain tumor. Brain Pathalogy, 26:1, 3-17, (2016). https://doi.org/10.1111/bpa.12299
  • [29] Poli P., de Mello M.A., Buschini A., de Castro V.L.S.S., Restivo F.M., Rossi C., Zucchi T.M.A.D. Evaluation of the genotoxicity induced by the fungicide fenarimol in mammalian and plant cells by use of the single-cell gel electrophoresis assay. Mutation Research, 9;540:1 57-66, (2003). https://doi.org/10.1016/s1383-5718(03)00165-7
  • [30] Paolini M., Pozzetti L., Mesirca R., Sapone A., Cantelli-Forti G. Testosterone hydroxylase in evaluating induction and suppression of murine CYP isoenzymes by fenarimol. Archives of Toxicology 70, 451–456, (1996b). [Medline] [CrossRef]
  • [31] Grilli S., Ancora G., Rani P., Valenti A.M., Mazzullo M., Colacci A. In vivo unwinding fluorimetric assay as evidence of the damage induced by fenarimol and DNOC in rat liver DNA, Journal of toxicology and environmental health, 34, 485-494, (1991). https://doi.org/10.1080/15287399109531584
  • [32] de Castroa VLSS, de Mello MA, Poli, P., Zucchi T.M.A.D. Prenatal and perinatal fenarimol-induced genotoxicity in leukocytes of in vivo treated rats Mutation Research 583, 95-104, (2005) doi:10.1016/j.mrgentox.2005.02.001
  • [33] Hai D.Q., Varga S.I., Matkovics B. Organophosphate Effects on Antioxidant System of Carp (Cyprinus carpio) and Catfish (Ictalurus nebulosus). Biochemistry, 117:1, 83-89, (1997). https://doi.org/10.1016/s0742-8413(96)00234-4.
  • [34] Ojha A., Yaduvanshi S.K., Pant S.C., Lomash V., Srivastava N. Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environmental toxicology, 28:10, 543-552, (2013). https://doi.org/10.1002/tox.20748
  • [35] FAO, The state of food security and nutrition in the World. Urbanization, agrifood systems transformation and healthy dıets across the rural–urban continuum. Food and agriculture organization of the United Nations, International fund for agricultural development, United nations children’s fund, world food programme, World health organization, Rome, (2023b). ISBN 978-92-5-137226-5
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Egemen Dere 0000-0001-9572-1051

Proje Numarası F(U)-2003/65
Gönderilme Tarihi 1 Mayıs 2025
Kabul Tarihi 20 Mayıs 2025
Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Dere, E. (2025). The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol. Uluslararası Bilim Teknoloji ve Tasarım Dergisi, 6(1), 73-85.
AMA Dere E. The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. Haziran 2025;6(1):73-85.
Chicago Dere, Egemen. “The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol”. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 6, sy. 1 (Haziran 2025): 73-85.
EndNote Dere E (01 Haziran 2025) The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 6 1 73–85.
IEEE E. Dere, “The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol”, Uluslararası Bilim Teknoloji ve Tasarım Dergisi, c. 6, sy. 1, ss. 73–85, 2025.
ISNAD Dere, Egemen. “The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol”. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 6/1 (Haziran2025), 73-85.
JAMA Dere E. The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2025;6:73–85.
MLA Dere, Egemen. “The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol”. Uluslararası Bilim Teknoloji ve Tasarım Dergisi, c. 6, sy. 1, 2025, ss. 73-85.
Vancouver Dere E. The Changes in LDH Activity in Various Tissues of Rats Exposed to Fenarimol. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2025;6(1):73-85.