Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYTICAL HIERARCH PROCESS BASED TEMPORARY SHELTER SITE SELECTION FOR POST-DISASTER EMERGENCY SITUATIONS

Yıl 2021, , 1368 - 1381, 19.12.2021
https://doi.org/10.46928/iticusbe.882493

Öz

Purpose: Disasters are natural events that humanity can encounter at unexpected times. The unexpected occurrence of these natural events can bring with it many disasters. Undoubtedly, the way to get rid of this situation with the least damage after a disaster is to take precautions beforehand. Knowing the actions to be taken after an earthquake can allow the earthquake to end with the least loss of life. The selection of temporary shelter areas to be created after the disaster is one of the most important steps to meet the shelter and needs of people after the disaster. The selection of the temporary accommodation area may depend on many different criteria. Therefore, the selection of alternative temporary accommodation can be defined as a multi-criteria decision-making problem. This study aims to make an application on the selection of temporary shelter after a possible disaster and to decide on the most suitable alternative location.
Method: In the study, the analytical hierarchy process which is a multi-criteria decision-making method was used to solve the problem. In this method, pairwise comparisons of the criteria determined by the decision-makers are made. In addition, comparisons are made between each criterion and alternative, allowing the selection of the most appropriate alternative. This method was used in this study due to little information and uncomplicated processing steps.
Findings: In the study, the most suitable temporary shelter site was selected. Six different criteria were taken into account in this selection process (shelter size, distance to health centers, distance to city center, infrastructure, distance to social areas, and accessibility). Three different locations that meet these criteria have been identified as the most suitable. According to these determined criteria, the three most suitable positions were evaluated according to the analytical hierarchy process method. According to the findings, it was seen that the criterion of shelter size had the highest weight. In the evaluations made among the alternative locations, it was seen that the third alternative location was the most suitable place as a temporary shelter site.
Originality: In this study, the process of evaluating temporary shelter alternatives after a disaster is discussed. There are authorized boards for post-disaster interventions in our country. These boards are directly responsible for taking measures in case of natural disasters such as earthquakes and floods that occur suddenly both in provinces and districts. Therefore, thanks to this study, these committees will be able to determine scientifically alternative positions and ensure that people's lives are saved quickly in case of a possible disaster. In other words, this study is an exemplary study that can be applied in all provinces and districts in case of a possible disaster.

Kaynakça

  • Abdel-Basset, M., Gamal, A., Chakrabortty, R. K., & Ryan, M. (2021). A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study. Journal of Cleaner Production, 280, 124462.
  • Akpınar, M. E. (2016). Üniversite Ring Sistemi Kalitesinin Optimizasyonu. Uluslararası Katılımlı 16. Üretim Araştırmaları Sempozyumu, 50–55.
  • Akyüz, Y. & Soba, M. (2013). ELECTRE yöntemiyle tekstil sektöründe optimal kuruluş yeri seçimi: Uşak ili örneği. International Journal, 9(19). 185-198.
  • Aksoy, Y., Turan, A.Y., & Atalay, H. (2009). İstanbul Fatih İlçesi Yeşil Alan Yeterliliğinin Marmara Depremi Öncesi ve Sonrası Değerleri Kullanılarak İncelenmesi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 14(2), 137-150.
  • Ar, İ. M., Baki, B. & Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 13(13), 93–114.
  • Athawale, V. M., & Chakraborty, S. (2010). Facility location selection using PROMETHEE II method. International Conference on Industrial Engineering and Operations Management, 59–64.
  • Bayram V., Tansel B.Ç., & Yaman H. (2015). Compromising systema and user ınterests in Shelter location and evacuation planning, Transportation Research, 72(1), 146-163.
  • Bozorgi A. & Jabalameli, M. S. (2012). Alinaghian, M.; Heydari, M. A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol, 60, 357–371.
  • Du, S. (2018). Urban Emergency Shelter Site Selection Method Based on Ant Colony Algorithm; Shanghai Normal University: Shanghai, China.
  • Ehsanifar, M., Wood, D. A., & Babaie, A. (2021). UTASTAR method and its application in multi-criteria warehouse location selection. Operations Management Research, 14(1), 202-215.
  • Gama, M., Scaparra, M. P. & Santos, B. F. (2013). Optimal Location of Shelters for Mitigating Urban Floods. In Proceedings of the EWGT 2013, 16th Meeting of the EURO Working Group on Transportation, Porto, Portugal, 4–6 September.
  • Gama, M., Santos, B. F. & Scaparra, M. P. A. (2015). Multi-period shelter location-allocation model with evacuation orders for flood disasters. European J. Comput. Optim, 4, 1–25.
  • García, J. L., Alvarado, A., Blanco, J., Jiménez, E., Maldonado, A. A., & Cortés, G. (2014). Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an Analytic Hierarchy Process. Computers and Electronics in Agriculture, 100, 60–69.
  • Guler, D., Adanacıoğlu, H., Saner, G., & Azak, Ş. (2014). Promethee yöntemi ile gıda sanayi kuruluş yeri seçiminin belirlenmesi: Kuru domates işletmesi örneği. I. Uluslararası Katılımlı Proje Yönetimi Konferansı- Proje Yönetim Zirvesi, 92–101.
  • Horner, M. W., Ozguven, E. E. Marcelin, J.M. & Kocatepe, A. (2018). Special needs hurricane shelters and the ageing population: Development of a methodology and a case study application. Disasters, 42, 169–186.
  • Hu, F., Xu, W. & Li, X. A. (2012). Modified particle swarm optimization algorithm for optimal allocation of earthquake emergency shelters. Int. J. Geogr. Inf. Sci, 26, 1643–1666.
  • Hu Z.H., Sheu J.B., & Xizo L., (2014). Post-disaster Evacuation and Temporary Resettlement Considering Panic and Panic Spread, Transportation Research, 69, 112-132.
  • Kongsomsaksakul, S., Yang, C. & Chen, A. (2005). Shelter location-allocation model for flood evacuation planning. J. East. Asia Soc. Transp. Stud, 6, 4237–4252.
  • Komchornrit, K. (2017). The selection of dry port location by a hybrid CFA-MACBETHPROMETHEE method : A case study of Southern Thailand. The Asian Journal of Shipping and Logistics, 33(3), 141–153.
  • Koçak, M., & Çalık, A. (2020). Banka seçim tercihlerinin bulanik kümelere dayali yeni bir karar verme çerçevesi ile değerlendirilmesi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19, 73-94.
  • Kuo, R. J., Chi, S. C. & Kao, S. S. (2002). A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Computers in Industry, 47(2), 199-214.
  • Ma, Y., Xu, W., Qin, L. & Zhao, X. (2019). Site selection models in natural disaster shelters: a review. Sustainability, 11(2), 399.
  • Macit, İ. (2019). Bütünleşik afet yönetiminde Sendai çerçeve eylem planının beklenen etkisi, Journal of Natural Hazards and Environment, 2019; 5(1): 175-186.
  • Maral, H. (2016). Afet Sonrası Geçici Yerleşim Yerlerinin Planlanmasında Üst Ölçekli Planlama: Karşıyaka Örneği, Yayınlanmamış YL Tezi, Gediz Üni., FBE, Kentsel Yenileme Anabilim Dalı, İzmir.
  • Mojtahedi, M., & Oo, B. L. (2017). Critical attributes for proactive engagement of stakeholders in disaster risk management. International Journal of Disaster Risk Reduction, 21, 35-43.
  • Omidvar, B., Baradaran, M. & Nojavan M., (2013), Temporary site selection and decisionmaking methods: a case study of Tehran, Iran, Disasters, 37(3), 536-553.
  • Ömürgönülşen, M., & Menten, C. (2021). Bulanık TOPSIS Yöntemi ile Ankara İli İçin Olası Afet Sonrası Geçici Barınma Alanlarının Seçimi. Doğal Afetler ve Çevre Dergisi, 7(1), 159-175.
  • Pan, A. (2009). Typhoon disaster shelter selection model based on genetic algorithm. Intemet Fortune, 218–219.
  • Pan, A. (2010). The applications of maximal covering model in typhoon emergency shelter location problem. In Proceedings of the IEEE Industrial Engineering and Engineering Management (IEEM), Macao, China, 1727–1731.
  • Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
  • Sánchez, J. M., García, M. S., & Lamata, M. T. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of Cleaner Production, 127, 387–398.
  • Sherali, H. D., Carter, T.B. & Hobeika, A. G. (1991). A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transp. Res. Part B Methodology, 25, 439–452.
  • Şengün, H. (2007). Afet Yönetim Sistemi ve Marmara Depremi Sonrasında Yaşanan Sorunlar. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Siyaset Bilimi ve Kamu Yönetimi, Kent ve Çevre Bilimleri Ana Bilim Dalı. Doktora Tezi, Ankara.
  • Tarabanis, K. & Tsionas, I. (1999). Using Network Analysis for Emergency Planning in Case of Earthquake. Transactions in GIS, 3, 187–197.
  • Trivedi A., (2018), A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response, International Journal of Disaster Risk Reduction, 31, 722-728.
  • Tolga, A.C., Tuysuz, F. & Kahraman, C. (2013). A fuzzy multi-criteria decision analysis approach for retail location selection. International Journal of Information Technology & Decision Making, 12(4), 729-755.
  • Torkayesh, A. E., Zolfani, S. H., Kahvand, M., & Khazaelpour, P. (2021). Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustainable Cities and Society, 67, 102712.
  • Tsukahara, K. (2017). World Federation of Engineering Organizations (WFEO)World Federation of Engineering Organizations Activities in Disaster Risk Reduction. In Workshop on World Landslide Forum, 155-160.
  • Unisdr (2005). United Nations International Strategy for Disaster Reduction, Hyogo framework for action 2005-2015: building the resilience of nations and communities to disasters. In Extract from the final report of the World Conference on Disaster Reduction.
  • Unisdr (2015). United Nations International Strategy for Disaster Reduction, Sendai Framework for Disaster Risk Reduction 2015–2030.
  • Vafaei, N. (2014). Selecting The Field Hospital Location For Disasters: A case study in Istanbul, Thesis (M.Sc.), İstanbul Technical University, Institute of Science and Technology, Istanbul.
  • Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90(10), 3048–3056.
  • Wang, Z., & Liu, L. (2016). Optimized PROMETHEE based on interval neutrosophic sets for new energy storage alternative selection. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 39(9), 69–77.
  • Wiguna, K. A., Sarno, R., & Ariyani, N. F. (2016). Optimization solar farm site selection using multi-criteria decision making fuzzy AHP and PROMETHEE : Case study in Bali. International Conference on Information, Communication Technology and System (ICTS) Optimization, 237–243.
  • Wex F., Schryen G., Feuerriegel S., & Neumann D., (2014). Emergency Response in Natural Disaster Management: Allocation and Scheduling of Rescue Units, European Journal of Operational Research, 235(3), 697-708.
  • You, X., Chen, T., & Yang, Q. (2016). Approach to multi-criteria group decision-making problems based on the best-worst-method. Symmetry, 8(95), 1–16.
  • Yuan, Y., Liu, Y., Zhu, S. & Wang, J. (2015). Maximal preparedness coverage model and its algorithm for emergency shelter location. J. Nat. Disasters, 24, 8–14.
  • Zhou, T. & Jian, F. (2001). Study on establishing the supporting system for location of the urgent refuge. Res. Soil Water Conserv, 8, 17–24.

ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNE DAYALI AFET SONRASI ACİL DURUMLAR İÇİN GEÇİCİ BARINMA ALANI SEÇİMİ

Yıl 2021, , 1368 - 1381, 19.12.2021
https://doi.org/10.46928/iticusbe.882493

Öz

Amaç: Afetler insanlığın hiç beklenmedik zamanda karşılaşabileceği doğa olaylarıdır. Bu doğa olaylarının beklenmedik zamanda gerçekleşmesi beraberinde birçok felaketi getirebilmektedir. Hiç kuşkusuz afet sonrası en az zararla bu durumdan kurtulmanın yolu önceden tedbir alınmasıdır. Bir depremden sonra yapılacak işlemlerin belli olması en az can kaybı ile depremin sonlanmasına imkan tanıyabilir. Afet sonrası oluşturulacak geçici barınma bölgelerinin seçimi afetten sonra insanların barınma ve ihtiyaçlarının giderilmesi için en önemli adımlardan birisidir. Geçici barınma alanının seçimi çok farklı sayıda kritere bağlı olabilmektedir. Dolayısıyla alternatif geçici barınma alanı seçimi bir çok kriterli karar verme problemi olarak tanımlanabilir. Bu çalışmada amaç olası bir afet sonrası geçici barınma alanı seçimi üzerine bir uygulama yapmak ve en uygun alternatif konuma karar vermektir.
Yöntem: Çalışmada problemin çözümü için çok kriterli karar verme yöntemi olan analitik hiyerarşi süreci kullanılmıştır. Bu yöntemde karar vericiler tarafından belirlenen kriterlerin ikili karşılaştırmaları yapılmaktadır. Ayrıca, her bir kriter ve alternatif arasında da kıyaslama yapılarak en uygun alternatif seçimine imkan tanımaktadır. Bu yöntem az bilgi ve karmaşık olmayan işlem aşamaları sebebiyle bu çalışmada kullanılmıştır.
Bulgular: Çalışmada en uygun geçici barınma alanı seçimi yapılmıştır. Bu seçim işleminde altı farklı kriter dikkate alınmıştır (kamp boyutu, sağlık merkezlerine uzaklık, şehir merkezine uzaklık, altyapı, sosyal alanlara mesafe ve ulaşılabilirlik). Bu kriterleri karşılayan en uygun üç farklı konum belirlenmiştir. Bu belirlenen kriterlere göre en uygun üç konum analitik hiyerarşi süreci yöntemine göre değerlendirilmiştir. Elde edilen bulgulara göre barınma alanının boyutu kriterinin en yüksek ağırlığa sahip olduğu görülmüştür. Alternatif konumlar arasında yapılan değerlendirmelerde ise üçüncü alternatif konumun, geçici barınma alanı olarak en uygun yer olduğu görülmüştür.
Özgünlük: Bu çalışmada bir afet sonrası geçici barınma alternatiflerinin değerlendirilmesi süreci ele alınmıştır. Ülkemizde afet sonrası müdahaleler için yetkili kurullar bulunmaktadır. Bu kurullar gerek illerde gerekse de ilçelerde ansızın yaşanan deprem ve sel gibi doğal afetlerde tedbirler almak için doğrudan sorumludurlar. Dolayısıyla bu çalışma sayesinde bu kurullar bilimsel açıdan alternatif konumlar belirleyerek olası bir afet durumunda insanların hayatlarının hızlı bir şekilde kurtarılmasını sağlayabileceklerdir. Diğer bir ifadeyle bu çalışma olası bir afet durumunda tüm illerde ve ilçelerde uygulanabilecek örnek bir çalışmadır.

Kaynakça

  • Abdel-Basset, M., Gamal, A., Chakrabortty, R. K., & Ryan, M. (2021). A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study. Journal of Cleaner Production, 280, 124462.
  • Akpınar, M. E. (2016). Üniversite Ring Sistemi Kalitesinin Optimizasyonu. Uluslararası Katılımlı 16. Üretim Araştırmaları Sempozyumu, 50–55.
  • Akyüz, Y. & Soba, M. (2013). ELECTRE yöntemiyle tekstil sektöründe optimal kuruluş yeri seçimi: Uşak ili örneği. International Journal, 9(19). 185-198.
  • Aksoy, Y., Turan, A.Y., & Atalay, H. (2009). İstanbul Fatih İlçesi Yeşil Alan Yeterliliğinin Marmara Depremi Öncesi ve Sonrası Değerleri Kullanılarak İncelenmesi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 14(2), 137-150.
  • Ar, İ. M., Baki, B. & Özdemir, F. (2014). Kuruluş yeri seçiminde bulanık AHS-VIKOR yaklaşımının kullanımı: Otel sektöründe bir uygulama. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 13(13), 93–114.
  • Athawale, V. M., & Chakraborty, S. (2010). Facility location selection using PROMETHEE II method. International Conference on Industrial Engineering and Operations Management, 59–64.
  • Bayram V., Tansel B.Ç., & Yaman H. (2015). Compromising systema and user ınterests in Shelter location and evacuation planning, Transportation Research, 72(1), 146-163.
  • Bozorgi A. & Jabalameli, M. S. (2012). Alinaghian, M.; Heydari, M. A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol, 60, 357–371.
  • Du, S. (2018). Urban Emergency Shelter Site Selection Method Based on Ant Colony Algorithm; Shanghai Normal University: Shanghai, China.
  • Ehsanifar, M., Wood, D. A., & Babaie, A. (2021). UTASTAR method and its application in multi-criteria warehouse location selection. Operations Management Research, 14(1), 202-215.
  • Gama, M., Scaparra, M. P. & Santos, B. F. (2013). Optimal Location of Shelters for Mitigating Urban Floods. In Proceedings of the EWGT 2013, 16th Meeting of the EURO Working Group on Transportation, Porto, Portugal, 4–6 September.
  • Gama, M., Santos, B. F. & Scaparra, M. P. A. (2015). Multi-period shelter location-allocation model with evacuation orders for flood disasters. European J. Comput. Optim, 4, 1–25.
  • García, J. L., Alvarado, A., Blanco, J., Jiménez, E., Maldonado, A. A., & Cortés, G. (2014). Multi-attribute evaluation and selection of sites for agricultural product warehouses based on an Analytic Hierarchy Process. Computers and Electronics in Agriculture, 100, 60–69.
  • Guler, D., Adanacıoğlu, H., Saner, G., & Azak, Ş. (2014). Promethee yöntemi ile gıda sanayi kuruluş yeri seçiminin belirlenmesi: Kuru domates işletmesi örneği. I. Uluslararası Katılımlı Proje Yönetimi Konferansı- Proje Yönetim Zirvesi, 92–101.
  • Horner, M. W., Ozguven, E. E. Marcelin, J.M. & Kocatepe, A. (2018). Special needs hurricane shelters and the ageing population: Development of a methodology and a case study application. Disasters, 42, 169–186.
  • Hu, F., Xu, W. & Li, X. A. (2012). Modified particle swarm optimization algorithm for optimal allocation of earthquake emergency shelters. Int. J. Geogr. Inf. Sci, 26, 1643–1666.
  • Hu Z.H., Sheu J.B., & Xizo L., (2014). Post-disaster Evacuation and Temporary Resettlement Considering Panic and Panic Spread, Transportation Research, 69, 112-132.
  • Kongsomsaksakul, S., Yang, C. & Chen, A. (2005). Shelter location-allocation model for flood evacuation planning. J. East. Asia Soc. Transp. Stud, 6, 4237–4252.
  • Komchornrit, K. (2017). The selection of dry port location by a hybrid CFA-MACBETHPROMETHEE method : A case study of Southern Thailand. The Asian Journal of Shipping and Logistics, 33(3), 141–153.
  • Koçak, M., & Çalık, A. (2020). Banka seçim tercihlerinin bulanik kümelere dayali yeni bir karar verme çerçevesi ile değerlendirilmesi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19, 73-94.
  • Kuo, R. J., Chi, S. C. & Kao, S. S. (2002). A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Computers in Industry, 47(2), 199-214.
  • Ma, Y., Xu, W., Qin, L. & Zhao, X. (2019). Site selection models in natural disaster shelters: a review. Sustainability, 11(2), 399.
  • Macit, İ. (2019). Bütünleşik afet yönetiminde Sendai çerçeve eylem planının beklenen etkisi, Journal of Natural Hazards and Environment, 2019; 5(1): 175-186.
  • Maral, H. (2016). Afet Sonrası Geçici Yerleşim Yerlerinin Planlanmasında Üst Ölçekli Planlama: Karşıyaka Örneği, Yayınlanmamış YL Tezi, Gediz Üni., FBE, Kentsel Yenileme Anabilim Dalı, İzmir.
  • Mojtahedi, M., & Oo, B. L. (2017). Critical attributes for proactive engagement of stakeholders in disaster risk management. International Journal of Disaster Risk Reduction, 21, 35-43.
  • Omidvar, B., Baradaran, M. & Nojavan M., (2013), Temporary site selection and decisionmaking methods: a case study of Tehran, Iran, Disasters, 37(3), 536-553.
  • Ömürgönülşen, M., & Menten, C. (2021). Bulanık TOPSIS Yöntemi ile Ankara İli İçin Olası Afet Sonrası Geçici Barınma Alanlarının Seçimi. Doğal Afetler ve Çevre Dergisi, 7(1), 159-175.
  • Pan, A. (2009). Typhoon disaster shelter selection model based on genetic algorithm. Intemet Fortune, 218–219.
  • Pan, A. (2010). The applications of maximal covering model in typhoon emergency shelter location problem. In Proceedings of the IEEE Industrial Engineering and Engineering Management (IEEM), Macao, China, 1727–1731.
  • Saaty, T. L. (1980). The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073-1076.
  • Sánchez, J. M., García, M. S., & Lamata, M. T. (2016). Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. Journal of Cleaner Production, 127, 387–398.
  • Sherali, H. D., Carter, T.B. & Hobeika, A. G. (1991). A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions. Transp. Res. Part B Methodology, 25, 439–452.
  • Şengün, H. (2007). Afet Yönetim Sistemi ve Marmara Depremi Sonrasında Yaşanan Sorunlar. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Siyaset Bilimi ve Kamu Yönetimi, Kent ve Çevre Bilimleri Ana Bilim Dalı. Doktora Tezi, Ankara.
  • Tarabanis, K. & Tsionas, I. (1999). Using Network Analysis for Emergency Planning in Case of Earthquake. Transactions in GIS, 3, 187–197.
  • Trivedi A., (2018), A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response, International Journal of Disaster Risk Reduction, 31, 722-728.
  • Tolga, A.C., Tuysuz, F. & Kahraman, C. (2013). A fuzzy multi-criteria decision analysis approach for retail location selection. International Journal of Information Technology & Decision Making, 12(4), 729-755.
  • Torkayesh, A. E., Zolfani, S. H., Kahvand, M., & Khazaelpour, P. (2021). Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustainable Cities and Society, 67, 102712.
  • Tsukahara, K. (2017). World Federation of Engineering Organizations (WFEO)World Federation of Engineering Organizations Activities in Disaster Risk Reduction. In Workshop on World Landslide Forum, 155-160.
  • Unisdr (2005). United Nations International Strategy for Disaster Reduction, Hyogo framework for action 2005-2015: building the resilience of nations and communities to disasters. In Extract from the final report of the World Conference on Disaster Reduction.
  • Unisdr (2015). United Nations International Strategy for Disaster Reduction, Sendai Framework for Disaster Risk Reduction 2015–2030.
  • Vafaei, N. (2014). Selecting The Field Hospital Location For Disasters: A case study in Istanbul, Thesis (M.Sc.), İstanbul Technical University, Institute of Science and Technology, Istanbul.
  • Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of Environmental Management, 90(10), 3048–3056.
  • Wang, Z., & Liu, L. (2016). Optimized PROMETHEE based on interval neutrosophic sets for new energy storage alternative selection. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 39(9), 69–77.
  • Wiguna, K. A., Sarno, R., & Ariyani, N. F. (2016). Optimization solar farm site selection using multi-criteria decision making fuzzy AHP and PROMETHEE : Case study in Bali. International Conference on Information, Communication Technology and System (ICTS) Optimization, 237–243.
  • Wex F., Schryen G., Feuerriegel S., & Neumann D., (2014). Emergency Response in Natural Disaster Management: Allocation and Scheduling of Rescue Units, European Journal of Operational Research, 235(3), 697-708.
  • You, X., Chen, T., & Yang, Q. (2016). Approach to multi-criteria group decision-making problems based on the best-worst-method. Symmetry, 8(95), 1–16.
  • Yuan, Y., Liu, Y., Zhu, S. & Wang, J. (2015). Maximal preparedness coverage model and its algorithm for emergency shelter location. J. Nat. Disasters, 24, 8–14.
  • Zhou, T. & Jian, F. (2001). Study on establishing the supporting system for location of the urgent refuge. Res. Soil Water Conserv, 8, 17–24.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Muhammet Enes Akpınar 0000-0003-0328-6107

Zehra Nuray Nişancı 0000-0003-1782-237X

Yayımlanma Tarihi 19 Aralık 2021
Gönderilme Tarihi 18 Şubat 2021
Kabul Tarihi 24 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akpınar, M. E., & Nişancı, Z. N. (2021). ANALİTİK HİYERARŞİ SÜRECİ YÖNTEMİNE DAYALI AFET SONRASI ACİL DURUMLAR İÇİN GEÇİCİ BARINMA ALANI SEÇİMİ. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 20(42), 1368-1381. https://doi.org/10.46928/iticusbe.882493