BibTex RIS Kaynak Göster

Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi

Yıl 2006, Cilt: 37 Sayı: 4, 162 - 167, 19.07.2014

Öz

Serbest radikallerin kimyasal olarak mevcudiyeti konusunda, yaklaşık 100 yıl önce bir sonuca ulaşılmakla birlikte, varlıkları ilk 30-40 yıl boyunca dünya çapında kabul görmemiştir. Serbest radikallerin biyolojik sistemlerdeki varlığı ve önemi 1950’lerin ortalarına kadar kabul görmese de, reaktif oksijen biyokimyasını kuran bir grup bilim adamının katkıları ile varlıkları ve önemleri aydınlatılmıştır. Yirminci yüzyılın ikinci yarısının büyük bir kısmında, reaktif oksijen türevlerine, doku hasarı ve hastalığına yol açan bir tür biyokimyasal “oksitleyici ajan” gözüyle bakılmıştır. Yirmibirinci yüzyıla girerken reaktif oksijen biyokimyası bir disiplin olarak olgunlaşmış ve biyomedikal bilimler arasındaki önemi yerleşmiştir. Günümüzde hemen her hastalığın bir dereceye kadar oksidatif strese bağlı olduğu kabul edilmektedir. Ayrıca günümüzde, reaktif oksijen türevlerinin (ROS) homeostazisini devam ettirmeye yardımcı olmak üzere, normal ve sağlıklı dokuların hücrelerinde sıkı-kontrollü bir şekilde oluştuğu kabul görmeye başlamıştır. Ortaya çıkan yeni teknolojilerin, özellikle proteomik teknolojilerin, reaktif oksijen biyokimyası alanında ilerideki gelişmeleri kolaylaştıracağı konusu bilimsel çevrelerce tartışılmaktadır.

Kaynakça

  • Kopáni M, Celec P, Danisovic L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta 2006; 364: 61-66.
  • Staroverov VN, Davidson ER. Distribution of effectively unpaired electrons. Chem Phys Lett 2000; 330: 161- 168.
  • Fenton HJH. On a new reaction of tartaric acid. Chem News 1876: 33; 190.
  • Fenton HJH. The oxidation of tartaric in the presence of iron. J Chem Soc Proc 1894; 10: 157-158.
  • Fenton HJH. Constitution of a new dibasic acid, re- sulting from the oxidation of tartaric acid. J Chem Soc Trans 1896; 69: 546-562.
  • Koppenol WH. The centennial of the Fenton reaction. Free Radical Biol Med 1993; 15: 645-651.
  • Schoepfle CS, Bachmann WE. Moses Gomberg 1867- 1947. J Am Chem Soc 1948; 69: 2915-2921.
  • Ihde AJ. The history of free radicals and Moses Gom- berg’s contributions. Pure and Applied Chemistry 1967; 30: 1-16.
  • Gomberg M. An instance of trivalent carbon: Triphenyl- methyl J Am Chem Soc 1900; 22: 757-771.
  • McBride JM. The hexaphenylethane riddle. Tetrahedron 1974; 30: 2009-2022.
  • Tidwell TT. Sterically crowded organic molecules: synthesis, structure and properties. Tetrahedron 1978; 34: 1855-1868.
  • Binger CAL, Faulkner JL, Moore RL. Oxygen poisoning in mammals. J Exp Med 1927; 45: 849-864.
  • Haber F, Willstätter R.Unpaarigheit und radikalketten im reaktion-mechanismus organischer und enzymatis- cher vorgänge. Chem Ber 1931; 64: 2844-2856.
  • Haber F, Weiss J. Über die katalyse des hydroperoxydes. Naturwiss 1932; 51: 948-950.
  • Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature 1954; 174: 689-691.
  • Devasagayam TPA, Tilak JC, Boloor KK Sane KS,Ghas- kadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects.JAPI 2004; 52: 794-804.
  • Gershman R, Gilbert DL, Nye SW, Dwyer P, FennWO. Oxygen poisoning and X-irradiation a mechanism in common. Science 1954; 119: 623-626.
  • McCord JM, Fridovich I. Superoxide dismutase; an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 6049-6055.
  • Harman D. The biologic clock: the mitochondria? J Am Geriatric Soc 1972; 20: 145-147.
  • Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 1988; 241:1-5.
  • Palmer RMJ, Ferrige AG, Moncado S. Nitric oxide re- lease accounts for the biological activity of endotheli- um-derived relaxing factor. Nature 1987;327: 524-526.
  • Ignarro LJ, Buga JM, Wood KS, Byrns RS, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc Natl Acad Sci USA 1987; 84: 9265-9269.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Free- man BA. Apparent hydrokyl radical production by pe- roxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620-1624.
  • Snyder SH. Janus faces of nitric oxide. Nature 1993; 364: 577.
  • Lymar SV, Hurst JK. Rapid detection between peroxy- nitrite and carbon dioxide: implications for biological activity. J Am Chem Society 1995; 117: 8867-8868.
  • Wenworth P, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschnmoser A, Lerner RA. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 2002;298: 2195-2199.
  • Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y.(eds). Free radicals in Chemistry Biology and Medicine, OICA International, London, 2000.
  • Stephens HN. Studies in auto-oxidation. I. Cyclohexe- ne peroxide. (Preliminary communication). J Am Chem Soc 1928; 50; 568-571.
  • Farmer EH. α-Methylenic reactivity in olefinic and pol- yolefinic systems. Trans Faraday Soc 1942; 38: 340-348.
  • Farmer EH. The course of autoxidation reactions in polyisoprenes and allied compounds. Part I. The struc- ture and reactive tendencies of the peroxides of simple olefins. J Chem Soc 1942, 121-139.
  • Porter NA. Autoxidation of polyunsaturated lipids.Fac- tors controlling the stereochemistry of product hydrope- roxides. J Am Chem Soc 1980; 102: 5597-5601.
  • Porter NA, Wolf RA, Yarbro EM, Weenen H. The auto- oxidation of arachidonic acid: formation of the propo- sed SRS-A intermediate. Biochem Biophys Res Comm 1979; 89:1058-1064.
  • Porter NA, Byers JD, Holden KM, Menzel DB. Synt- hesis of prostoglandin H2. J Am Chem Soc 1979; 101: 4319-4322.
  • Porter NA, Weenen H. High performance liquid ch- romatographic seperations of phospholipids and phos- pholipid oxidation products. Methods Enzymol 1981; 72: 34-40.
  • Bokov A, Chaudhuri A, Richardson A. The role of oxi- dative damage and stress in aging. Mech Aging Dev 2004; 125: 811-826.
  • Swallow AJ. Radiation chemistry of organic compounds. New York, John Wiley&Sons, 1960; 211-224.
  • Garrison WM, Jayko ME, Bennett W. Radiation indu- ced oxidation of protein in aqueous solution. Rad Re- search 1962; 16: 483-502.
  • Schuessler H, Schilling K. Oxygen effect in radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radi- at Biol 1984; 45: 267-281.
  • Stadtman ER. Protein modification in aging. J Geron- tol 1988; 43: 112-120.
  • Stadtman ER, Levine RL. Free radical-mediated oxi- dation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25: 207-218.
  • Levine RN Oxidative modification of glutamine synthe- tase. Inactivation is due to loss of one histidine residue. J Biol Chem 1983; 258: 11823-11827.
  • Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987; 262: 5488-5491.
  • Stadtman ER. Biochemical markers of aging. Exp Ge- rontol 1988; 23: 327-347.
  • Stadtman ER. Protein oxidation and aging. Science 1992; 257: 1220-1224.
  • Frenkel K, Goldstein MS, Teebor GW. Identification of the cis-thymine glycol moiety in chemically oxidi- zed and gamma-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. Bioche- mistry 1981; 26: 7566-7571.
  • Floyd RA, Watson JJ, Wong PK Altmiller DH, Rickard RC. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanism of formation. Free Radical Res Commun 1986; 1: 163-172.
  • Richter C, Park J, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988; 85: 6465-6467.
  • Dizdaroğlu M, Gajewski E. Selectedion mass spect- rometry: assays of oxidative DNA damage. Methods Enzymol 1990; 186: 530-544.
  • Fraga CG, Shigenaga MK, Park J, Degan P, Ames BN. Oxidative damage to DNA during ageing: 8-hydroxy- 2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990; 87: 4533-4537.
  • Ames BN, Shigenaga MK, Hagen TM. Oxidants, an- tioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90: 7915-7922.
Yıl 2006, Cilt: 37 Sayı: 4, 162 - 167, 19.07.2014

Öz

Kaynakça

  • Kopáni M, Celec P, Danisovic L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta 2006; 364: 61-66.
  • Staroverov VN, Davidson ER. Distribution of effectively unpaired electrons. Chem Phys Lett 2000; 330: 161- 168.
  • Fenton HJH. On a new reaction of tartaric acid. Chem News 1876: 33; 190.
  • Fenton HJH. The oxidation of tartaric in the presence of iron. J Chem Soc Proc 1894; 10: 157-158.
  • Fenton HJH. Constitution of a new dibasic acid, re- sulting from the oxidation of tartaric acid. J Chem Soc Trans 1896; 69: 546-562.
  • Koppenol WH. The centennial of the Fenton reaction. Free Radical Biol Med 1993; 15: 645-651.
  • Schoepfle CS, Bachmann WE. Moses Gomberg 1867- 1947. J Am Chem Soc 1948; 69: 2915-2921.
  • Ihde AJ. The history of free radicals and Moses Gom- berg’s contributions. Pure and Applied Chemistry 1967; 30: 1-16.
  • Gomberg M. An instance of trivalent carbon: Triphenyl- methyl J Am Chem Soc 1900; 22: 757-771.
  • McBride JM. The hexaphenylethane riddle. Tetrahedron 1974; 30: 2009-2022.
  • Tidwell TT. Sterically crowded organic molecules: synthesis, structure and properties. Tetrahedron 1978; 34: 1855-1868.
  • Binger CAL, Faulkner JL, Moore RL. Oxygen poisoning in mammals. J Exp Med 1927; 45: 849-864.
  • Haber F, Willstätter R.Unpaarigheit und radikalketten im reaktion-mechanismus organischer und enzymatis- cher vorgänge. Chem Ber 1931; 64: 2844-2856.
  • Haber F, Weiss J. Über die katalyse des hydroperoxydes. Naturwiss 1932; 51: 948-950.
  • Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature 1954; 174: 689-691.
  • Devasagayam TPA, Tilak JC, Boloor KK Sane KS,Ghas- kadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects.JAPI 2004; 52: 794-804.
  • Gershman R, Gilbert DL, Nye SW, Dwyer P, FennWO. Oxygen poisoning and X-irradiation a mechanism in common. Science 1954; 119: 623-626.
  • McCord JM, Fridovich I. Superoxide dismutase; an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969; 244: 6049-6055.
  • Harman D. The biologic clock: the mitochondria? J Am Geriatric Soc 1972; 20: 145-147.
  • Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett 1988; 241:1-5.
  • Palmer RMJ, Ferrige AG, Moncado S. Nitric oxide re- lease accounts for the biological activity of endotheli- um-derived relaxing factor. Nature 1987;327: 524-526.
  • Ignarro LJ, Buga JM, Wood KS, Byrns RS, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc Natl Acad Sci USA 1987; 84: 9265-9269.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Free- man BA. Apparent hydrokyl radical production by pe- roxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620-1624.
  • Snyder SH. Janus faces of nitric oxide. Nature 1993; 364: 577.
  • Lymar SV, Hurst JK. Rapid detection between peroxy- nitrite and carbon dioxide: implications for biological activity. J Am Chem Society 1995; 117: 8867-8868.
  • Wenworth P, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez A, Janda KD, Babior BM, Eschnmoser A, Lerner RA. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 2002;298: 2195-2199.
  • Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y.(eds). Free radicals in Chemistry Biology and Medicine, OICA International, London, 2000.
  • Stephens HN. Studies in auto-oxidation. I. Cyclohexe- ne peroxide. (Preliminary communication). J Am Chem Soc 1928; 50; 568-571.
  • Farmer EH. α-Methylenic reactivity in olefinic and pol- yolefinic systems. Trans Faraday Soc 1942; 38: 340-348.
  • Farmer EH. The course of autoxidation reactions in polyisoprenes and allied compounds. Part I. The struc- ture and reactive tendencies of the peroxides of simple olefins. J Chem Soc 1942, 121-139.
  • Porter NA. Autoxidation of polyunsaturated lipids.Fac- tors controlling the stereochemistry of product hydrope- roxides. J Am Chem Soc 1980; 102: 5597-5601.
  • Porter NA, Wolf RA, Yarbro EM, Weenen H. The auto- oxidation of arachidonic acid: formation of the propo- sed SRS-A intermediate. Biochem Biophys Res Comm 1979; 89:1058-1064.
  • Porter NA, Byers JD, Holden KM, Menzel DB. Synt- hesis of prostoglandin H2. J Am Chem Soc 1979; 101: 4319-4322.
  • Porter NA, Weenen H. High performance liquid ch- romatographic seperations of phospholipids and phos- pholipid oxidation products. Methods Enzymol 1981; 72: 34-40.
  • Bokov A, Chaudhuri A, Richardson A. The role of oxi- dative damage and stress in aging. Mech Aging Dev 2004; 125: 811-826.
  • Swallow AJ. Radiation chemistry of organic compounds. New York, John Wiley&Sons, 1960; 211-224.
  • Garrison WM, Jayko ME, Bennett W. Radiation indu- ced oxidation of protein in aqueous solution. Rad Re- search 1962; 16: 483-502.
  • Schuessler H, Schilling K. Oxygen effect in radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radi- at Biol 1984; 45: 267-281.
  • Stadtman ER. Protein modification in aging. J Geron- tol 1988; 43: 112-120.
  • Stadtman ER, Levine RL. Free radical-mediated oxi- dation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25: 207-218.
  • Levine RN Oxidative modification of glutamine synthe- tase. Inactivation is due to loss of one histidine residue. J Biol Chem 1983; 258: 11823-11827.
  • Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987; 262: 5488-5491.
  • Stadtman ER. Biochemical markers of aging. Exp Ge- rontol 1988; 23: 327-347.
  • Stadtman ER. Protein oxidation and aging. Science 1992; 257: 1220-1224.
  • Frenkel K, Goldstein MS, Teebor GW. Identification of the cis-thymine glycol moiety in chemically oxidi- zed and gamma-irradiated deoxyribonucleic acid by high-pressure liquid chromatography analysis. Bioche- mistry 1981; 26: 7566-7571.
  • Floyd RA, Watson JJ, Wong PK Altmiller DH, Rickard RC. Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanism of formation. Free Radical Res Commun 1986; 1: 163-172.
  • Richter C, Park J, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988; 85: 6465-6467.
  • Dizdaroğlu M, Gajewski E. Selectedion mass spect- rometry: assays of oxidative DNA damage. Methods Enzymol 1990; 186: 530-544.
  • Fraga CG, Shigenaga MK, Park J, Degan P, Ames BN. Oxidative damage to DNA during ageing: 8-hydroxy- 2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990; 87: 4533-4537.
  • Ames BN, Shigenaga MK, Hagen TM. Oxidants, an- tioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90: 7915-7922.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derlemeler
Yazarlar

Ufuk Çakatay Bu kişi benim

Refik Kayalı Bu kişi benim

Yayımlanma Tarihi 19 Temmuz 2014
Yayımlandığı Sayı Yıl 2006 Cilt: 37 Sayı: 4

Kaynak Göster

APA Çakatay, U., & Kayalı, R. (2014). Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Dergisi, 37(4), 162-167.
AMA Çakatay U, Kayalı R. Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Dergisi. Temmuz 2014;37(4):162-167.
Chicago Çakatay, Ufuk, ve Refik Kayalı. “Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi”. Cerrahpaşa Tıp Dergisi 37, sy. 4 (Temmuz 2014): 162-67.
EndNote Çakatay U, Kayalı R (01 Temmuz 2014) Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Dergisi 37 4 162–167.
IEEE U. Çakatay ve R. Kayalı, “Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi”, Cerrahpaşa Tıp Dergisi, c. 37, sy. 4, ss. 162–167, 2014.
ISNAD Çakatay, Ufuk - Kayalı, Refik. “Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi”. Cerrahpaşa Tıp Dergisi 37/4 (Temmuz 2014), 162-167.
JAMA Çakatay U, Kayalı R. Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Dergisi. 2014;37:162–167.
MLA Çakatay, Ufuk ve Refik Kayalı. “Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi”. Cerrahpaşa Tıp Dergisi, c. 37, sy. 4, 2014, ss. 162-7.
Vancouver Çakatay U, Kayalı R. Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi. Cerrahpaşa Tıp Dergisi. 2014;37(4):162-7.