Araştırma Makalesi
BibTex RIS Kaynak Göster

Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları

Yıl 2017, Cilt: 7 Sayı: 13, 109 - 117, 01.06.2017

Öz

Mezenkimal kök hücreler (MKH) erişkin dokulardan elde edilen pluripotent kök hücrelerdir.

Mezenki-mal kök hücrelerin plastisite, farklılaşabilme, immünmodülatör aktiviteleri onları doku

rejenerasyonu, hedefli ilaç taşıma, yara iyileşmesi ve kanser gibi birçok alanda araştırılmaya

sevketmiştir. MKH’lerin, yarada olduğu gibi salgıladıkları enflamatuar ve sitokin benzerlikleri

sebebiyle kanserde de tümörlü ve metastatik bölgeye migrasyonu ve tropizmi olduğu bilinmektedir.

Ancak literatürde MKH’lerin tümörogenezi arttırdığına veya azalttığına dair çelişen bilgiler

mevcuttur. MKH’lerin immünmodülatör özel-likleri ile kanser hücrelerine karşı immün baskılayıcı

olabildikleri gibi immün arttırıcı da olabildikleri bilinmektedir. Meme kanserinde MKH’lerin terapötik

potansiyeli ise birçok kaynak tarafından destek-lenmektedir. Biz bu eleştiri yazımızda mezenkimal

kök hücrelerin meme kanseri progresyonu üzerinde etkilerini ve tedavi mekanizmalarını güncel bilgi

ile özetleyeceğiz.

Kaynakça

  • 1. Dominici M, Le Blanc K, Mueller I, Sla-per- Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317. 2. Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2009; 27: 2509- 2515. 3. Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology?. Transfus Med Hemother 2010; 37, 75-78. 4. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-3843. 5. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26: 151-162. 6. Aggarwal S, Pittenger MF, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822, (2005). 7. Trim N, Morgan S, Evans M, Issa R, Fine D, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol 2000; 156: 1235-1243. 8. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619-4621. 9. Klopp A H, Gupta A, Spaeth E, Andreeff M. & Marini F., 3rd., Dissecting a discrepancy in the literature: do mesenchymal stem cel-ls support or suppress tumor growth? Stem Cells, Vol.29, No.1, pp. 11-19, (2011). 10. Krabbe C.; Zimmer J. & Meyer M., Neural transdifferentiation of mesenchymal stem cells--a critical review. Apmis, Vol.113, No.11-12, pp. 831-844, (2005). 11. Patel S. A.; Heinrich A. C.; Reddy B. Y.; Srinivas B.; Heidaran N. & Rameshwar P., Breast cancer biology: the multifaceted roles of mesenchymal stem cells. J Oncol, Vol.2008, pp. 425895, (2008). 12. Uccelli A.; Moretta L. & Pistoia V., Mesenchymal stem cells in health and disease. Nat Rev Immunol, Vol.8, No.9, pp. 726-736, (2008). 13. Beckermann B.M., Kallifatidis G., Groth A., Frommhold D., Apel A., Mattern J., Salnikov A.V., Moldenhauer G., Wagner W., Diehlmann A., et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99: 622-631. 14. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, DiMattia G, Sullivan DE, Prockop DJ. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin- 1. Stem Cells 2009; 27: 670–681. 15. Zhang Y, Daquinag A, Traktuev DO, Ama-ya- Manzanares F, Simmons PJ, March KL, Pasqualini R, Arap W, Kolonin MG. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res 2009; 69: 5259-5266. 16. Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L, Song YH. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol 2011; 34: 55-67. 17. Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C, Song YH. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 2009; 284: 80-85. 18. Krohn A, Song YH, Muehlberg F, Droll L, Beckmann C, Alt E. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer Lett 2009; 280: 65-71. 19. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006; 203:1235-1247. 20. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18: 500-507. 21. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269: 67-77. 22. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009; 23: 925-933. 23. Cousin B, Ravet E, Poglio S, de Toni F, Bertuzzi M, Lulka H, Touil I, Andre M, Grolleau JL, Peron JM, et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS ONE 2009; 4(7): e6278. 24. Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP) PLoS ONE 2010; 5(7): e11813. 25. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration- dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113: 4197-4205. 26. Li Z,, Fan D, Xiong D, Mesenchymal stem cells as delivery vectors for anti-tumor therapy, Stem Cell Investigation 2015. 27. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153-156. 28. Roukos DH, Murray S, Briasoulis E. Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer BiolTher 2007; 6: 308-312. 29. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121: 2750-2767. 30. Ryu H, Oh JE, Rhee KJ, Baik SK, Kim J, Kang SJ, Sohn JH, Choi E, Shin HC, Kim YM, Kim HS, Bae KS, Eom YW. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-beta and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett 2014; 352: 220-227. 31. Zhou Y, Zuo D, Wang M, Zhang Y, Yu M, Yang J, Yao Z. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow- derived mesenchymal stem cells. Genes Cells 2014;19: 676-691. 32. Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 2013; 13: 535. 33. Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, Su W, Xu Y, Han Z, Kong D, Cheng Z, Xiang R, Li Z. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014; 35: 5162-5170. 34. Vegh I, Grau M, Gracia M, Grande J, de la Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther 2013; 20: 8-16. 35. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13(17): 5020-5027. 36. Lin SY, Yang J, Everett AD, Clevenger CV, Koneru M, Mishra PJ, Kamen B, Banerjee D, Glod J. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 2008; 314(17): 3107-3117. 37. Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 2008; 26(6): 1406-1413. 38. Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 2010; 8(8): 1074-1083. 39. Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg 2008; 247(2): 310-314. 40. Rattigan Y, Hsu J-M, Mishra PJ, Glod J, Banerjee D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 2010; 316(20): 3417-3124. 41. Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64: 739-748. 42. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62(13): 3603-3608. 43. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96(21): 1593-1603. 44. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007; 05(2):157-167. 45. Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, Su W, Xu Y, Han Z, Kong D, Cheng Z, Xiang R, Li Z. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014; 35: 5162-5170. 46. Gjorgieva D, Zaidman N, Bosnakovski D. Mesenchymal stem cells for anti-cancer drug delivery. Rec Pat Anticancer Drug Discov 2013; 8, 310-318. 47. Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots?. Stem Cells 2013; 31: 2033-2041. 48. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annual Review of Biochemistry 1998; 67: 227-264. 49. Celada A, Schreiber RD. Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-gamma. Journal of Immunology 1986; 137: 2373-2379. 50. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, et al. RecombinantIL-12 administration induces tumor regression in association with IFN-gamma production. Journal of Immunology 1994; 153:1697-1706. 51. Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107: 2570-2577. 52. Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27:1954-1962. 53. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95: 15623-15628. 54. Miura Y, Tsujioka T, Nishimura Y, Sakaguchi H, Maeda M, Hayashi H, et al. TRAIL expression up-regulated by interferon-gamma via phosphorylation of STAT1 induces myeloma cell death. Anticancer Research 2006; 26: 4115-4124. 55. Lee J, Shin JS, Park JY, Kwon D, Choi SJ, Kim SJ, et al. P38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis inducing ligand induced by interferon-gamma in fetal brain astrocytes. J Neurosci Res 2003; 74: 884-890. 56. Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews 2003; 14: 337-348. 57. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010; 70 (9): 3718-3729. 58. Du J, Zhou L, Chen X, Yan S, Ke M,Lu X, Wang Z, Yu W, Xiang AP. IFN-γ primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol 2012; 44: 1305-1314. 59. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009; 106: 4822-4827. 60. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69: 4134-4142. 61. Widowati W, Murti H, Jasaputra DK, Sumitro SB, Widodo MA, Fauziah N, Maesaroh M, Bachtiar I. Selective Cytotoxic Potential of IFN-γ and TNF-α on Breast Cancer Cell Lines (T47D and MCF7), Asian J Cell Biol 2016; 11 (1): 1-12.

Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları

Yıl 2017, Cilt: 7 Sayı: 13, 109 - 117, 01.06.2017

Öz

Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from adult tissues. The plasticity

of mesenchymal stem cells, differentiation, immunomodulatory activities have led them to

investigate in many areas such as tissue regeneration, target drug delivery, wound healing and

cancer. MSCs migrate to the region and have tropic and penetrate the tumor and metastatic regions

to remove the bladder. However, in the literature there is information on the extent to which MSCs

increase or decrease tumorigenesis. It is known that MSCs can be immunosuppressants against

cancer cells as well as immunostimulants with their immunomodulatory properties. The therapeutic

potential of MDRs in breast cancer is supported by a wide variety of sources. We will summarize the

interaction and treatment mechanisms of mesenchymal stem cells on breast cancer progression with

current knowledge.

Kaynakça

  • 1. Dominici M, Le Blanc K, Mueller I, Sla-per- Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-317. 2. Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2009; 27: 2509- 2515. 3. Lindner U, Kramer J, Rohwedel J, Schlenke P. Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology?. Transfus Med Hemother 2010; 37, 75-78. 4. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-3843. 5. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26: 151-162. 6. Aggarwal S, Pittenger MF, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822, (2005). 7. Trim N, Morgan S, Evans M, Issa R, Fine D, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol 2000; 156: 1235-1243. 8. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619-4621. 9. Klopp A H, Gupta A, Spaeth E, Andreeff M. & Marini F., 3rd., Dissecting a discrepancy in the literature: do mesenchymal stem cel-ls support or suppress tumor growth? Stem Cells, Vol.29, No.1, pp. 11-19, (2011). 10. Krabbe C.; Zimmer J. & Meyer M., Neural transdifferentiation of mesenchymal stem cells--a critical review. Apmis, Vol.113, No.11-12, pp. 831-844, (2005). 11. Patel S. A.; Heinrich A. C.; Reddy B. Y.; Srinivas B.; Heidaran N. & Rameshwar P., Breast cancer biology: the multifaceted roles of mesenchymal stem cells. J Oncol, Vol.2008, pp. 425895, (2008). 12. Uccelli A.; Moretta L. & Pistoia V., Mesenchymal stem cells in health and disease. Nat Rev Immunol, Vol.8, No.9, pp. 726-736, (2008). 13. Beckermann B.M., Kallifatidis G., Groth A., Frommhold D., Apel A., Mattern J., Salnikov A.V., Moldenhauer G., Wagner W., Diehlmann A., et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99: 622-631. 14. Block GJ, Ohkouchi S, Fung F, Frenkel J, Gregory C, Pochampally R, DiMattia G, Sullivan DE, Prockop DJ. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin- 1. Stem Cells 2009; 27: 670–681. 15. Zhang Y, Daquinag A, Traktuev DO, Ama-ya- Manzanares F, Simmons PJ, March KL, Pasqualini R, Arap W, Kolonin MG. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res 2009; 69: 5259-5266. 16. Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L, Song YH. Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol 2011; 34: 55-67. 17. Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C, Song YH. Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 2009; 284: 80-85. 18. Krohn A, Song YH, Muehlberg F, Droll L, Beckmann C, Alt E. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer Lett 2009; 280: 65-71. 19. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006; 203:1235-1247. 20. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L, Zhang X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 2008; 18: 500-507. 21. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269: 67-77. 22. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009; 23: 925-933. 23. Cousin B, Ravet E, Poglio S, de Toni F, Bertuzzi M, Lulka H, Touil I, Andre M, Grolleau JL, Peron JM, et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS ONE 2009; 4(7): e6278. 24. Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP) PLoS ONE 2010; 5(7): e11813. 25. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J. Concentration- dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113: 4197-4205. 26. Li Z,, Fan D, Xiong D, Mesenchymal stem cells as delivery vectors for anti-tumor therapy, Stem Cell Investigation 2015. 27. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153-156. 28. Roukos DH, Murray S, Briasoulis E. Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer BiolTher 2007; 6: 308-312. 29. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121: 2750-2767. 30. Ryu H, Oh JE, Rhee KJ, Baik SK, Kim J, Kang SJ, Sohn JH, Choi E, Shin HC, Kim YM, Kim HS, Bae KS, Eom YW. Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-beta and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett 2014; 352: 220-227. 31. Zhou Y, Zuo D, Wang M, Zhang Y, Yu M, Yang J, Yao Z. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow- derived mesenchymal stem cells. Genes Cells 2014;19: 676-691. 32. Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 2013; 13: 535. 33. Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, Su W, Xu Y, Han Z, Kong D, Cheng Z, Xiang R, Li Z. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014; 35: 5162-5170. 34. Vegh I, Grau M, Gracia M, Grande J, de la Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther 2013; 20: 8-16. 35. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13(17): 5020-5027. 36. Lin SY, Yang J, Everett AD, Clevenger CV, Koneru M, Mishra PJ, Kamen B, Banerjee D, Glod J. The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells. Exp Cell Res 2008; 314(17): 3107-3117. 37. Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 2008; 26(6): 1406-1413. 38. Pulukuri SMK, Gorantla B, Dasari VR, Gondi CS, Rao JS. Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 2010; 8(8): 1074-1083. 39. Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg 2008; 247(2): 310-314. 40. Rattigan Y, Hsu J-M, Mishra PJ, Glod J, Banerjee D. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 2010; 316(20): 3417-3124. 41. Shah K. Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev 2012; 64: 739-748. 42. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62(13): 3603-3608. 43. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96(21): 1593-1603. 44. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 2007; 05(2):157-167. 45. Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, Su W, Xu Y, Han Z, Kong D, Cheng Z, Xiang R, Li Z. Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014; 35: 5162-5170. 46. Gjorgieva D, Zaidman N, Bosnakovski D. Mesenchymal stem cells for anti-cancer drug delivery. Rec Pat Anticancer Drug Discov 2013; 8, 310-318. 47. Griffin MD, Elliman SJ, Cahill E, English K, Ceredig R, Ritter T. Concise review: adult mesenchymal stromal cell therapy for inflammatory diseases: how well are we joining the dots?. Stem Cells 2013; 31: 2033-2041. 48. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annual Review of Biochemistry 1998; 67: 227-264. 49. Celada A, Schreiber RD. Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-gamma. Journal of Immunology 1986; 137: 2373-2379. 50. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, et al. RecombinantIL-12 administration induces tumor regression in association with IFN-gamma production. Journal of Immunology 1994; 153:1697-1706. 51. Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2006; 107: 2570-2577. 52. Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27:1954-1962. 53. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA 1998; 95: 15623-15628. 54. Miura Y, Tsujioka T, Nishimura Y, Sakaguchi H, Maeda M, Hayashi H, et al. TRAIL expression up-regulated by interferon-gamma via phosphorylation of STAT1 induces myeloma cell death. Anticancer Research 2006; 26: 4115-4124. 55. Lee J, Shin JS, Park JY, Kwon D, Choi SJ, Kim SJ, et al. P38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis inducing ligand induced by interferon-gamma in fetal brain astrocytes. J Neurosci Res 2003; 74: 884-890. 56. Almasan A, Ashkenazi A. Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews 2003; 14: 337-348. 57. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 2010; 70 (9): 3718-3729. 58. Du J, Zhou L, Chen X, Yan S, Ke M,Lu X, Wang Z, Yu W, Xiang AP. IFN-γ primed human bone marrow mesenchymal stem cells induce tumor cell apoptosis in vitro via tumor necrosis factor-related apoptosis-inducing ligand. Int J Biochem Cell Biol 2012; 44: 1305-1314. 59. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 2009; 106: 4822-4827. 60. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69: 4134-4142. 61. Widowati W, Murti H, Jasaputra DK, Sumitro SB, Widodo MA, Fauziah N, Maesaroh M, Bachtiar I. Selective Cytotoxic Potential of IFN-γ and TNF-α on Breast Cancer Cell Lines (T47D and MCF7), Asian J Cell Biol 2016; 11 (1): 1-12.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Makale
Yazarlar

Şule Terzioğlu Uşak Bu kişi benim

Deniz Genç Bu kişi benim

Ezgi Nurdan Yenilmez Bu kişi benim

Noushin Zibandeh Bu kişi benim

Hilal Fındık Bu kişi benim

Tunç Akkoç Bu kişi benim

İlhan Yaylım Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 13

Kaynak Göster

APA Terzioğlu Uşak, Ş., Genç, D., Yenilmez, E. N., Zibandeh, N., vd. (2017). Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları. Deneysel Tıp Araştırma Enstitüsü Dergisi, 7(13), 109-117.
AMA Terzioğlu Uşak Ş, Genç D, Yenilmez EN, Zibandeh N, Fındık H, Akkoç T, Yaylım İ. Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları. Deneysel Tıp Araştırma Enstitüsü Dergisi. Haziran 2017;7(13):109-117.
Chicago Terzioğlu Uşak, Şule, Deniz Genç, Ezgi Nurdan Yenilmez, Noushin Zibandeh, Hilal Fındık, Tunç Akkoç, ve İlhan Yaylım. “Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları”. Deneysel Tıp Araştırma Enstitüsü Dergisi 7, sy. 13 (Haziran 2017): 109-17.
EndNote Terzioğlu Uşak Ş, Genç D, Yenilmez EN, Zibandeh N, Fındık H, Akkoç T, Yaylım İ (01 Haziran 2017) Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları. Deneysel Tıp Araştırma Enstitüsü Dergisi 7 13 109–117.
IEEE Ş. Terzioğlu Uşak, D. Genç, E. N. Yenilmez, N. Zibandeh, H. Fındık, T. Akkoç, ve İ. Yaylım, “Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları”, Deneysel Tıp Araştırma Enstitüsü Dergisi, c. 7, sy. 13, ss. 109–117, 2017.
ISNAD Terzioğlu Uşak, Şule vd. “Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları”. Deneysel Tıp Araştırma Enstitüsü Dergisi 7/13 (Haziran 2017), 109-117.
JAMA Terzioğlu Uşak Ş, Genç D, Yenilmez EN, Zibandeh N, Fındık H, Akkoç T, Yaylım İ. Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları. Deneysel Tıp Araştırma Enstitüsü Dergisi. 2017;7:109–117.
MLA Terzioğlu Uşak, Şule vd. “Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları”. Deneysel Tıp Araştırma Enstitüsü Dergisi, c. 7, sy. 13, 2017, ss. 109-17.
Vancouver Terzioğlu Uşak Ş, Genç D, Yenilmez EN, Zibandeh N, Fındık H, Akkoç T, Yaylım İ. Mezenkimal Kök Hücrelerin Meme Kanseri Tedavisinde Güncel Katkıları. Deneysel Tıp Araştırma Enstitüsü Dergisi. 2017;7(13):109-17.