BibTex RIS Kaynak Göster

ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI

Yıl 2016, Cilt: 13 Sayı: 2, 115 - 128, 27.10.2016

Öz

Üstün zekâlı ve yetenekli öğrenciler eğitim hayatları boyunca sahip oldukları bilişsel
özelliklere uygun eğitim-öğretim fırsatlarına ve ortamlarına gereksinim duyarlar. Matematik müfredatının farklılaştırılması da matematiğin, insanlığın var oluşunun ve
gelişiminin tarihsel sürecinde oynadığı ve halen oynamakta olduğu önemli role istinaden üzerinde ciddiyetle durulması gereken bir konudur. Ayrıca matematik eğitimi öğrencilerin bireysel farklılıklarının gözle görülür bir şekilde öne çıktığı süreçlerden bir tanesidir. Bu bağlamda çalışmanın amacı; üstün zekâlı ve yetenekli bireylere potansiyellerini geliştirme fırsatları yaratabilmek adına, farklılaştırılmış̧ matematik öğretiminin önemini tartışmak, bu konuda faydalı olabilecek uygulamalar hakkında alan yazından önemli örnekleri paylaşmak, en iyi uygulamaları hangi bileşenlerin meydana getirdiğini aktarmaktır.

Kaynakça

  • Anderson L. W. & Krathwohl, D. R. (2010). Bloom’un eğitim hedefleri ile i̇lgili sınıflamasının güncelleştirilmiş biçimi. Durmuş Ali Özçelik (Çev.). Ankara: Pegem Akademi.
  • Banks, J. A. (1990). Teaching strategies for the social studies: Inquiry, valuing, and decision-making (4th edition). New York: Longman.
  • Chapin, S., O’Connor, C., & Anderson, N. (2003). Classroom discussions: Using math talk to help students learn: Grades K–6. Sausalito, CA: Math Solutions.
  • Davis, G. A., Rimm, S. B., & Siegle, D. (2013). Education of the gifted and talented (6th ed.). England: Pearson Education Limited.
  • Ervynck, G. (2002). Mathematical Creativity. In. D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42 – 52). New York, NY: Kluwer Academic Publishers.
  • Gavin, M. K., Sheffield, L. J., Chapin, S. H. ve Dailey, J. (2008). Project M3: Record Makers and Breakers: Using Algebra to Analyze Change; At the Mall with Algebra: Working with Variables and Equations. Iowa: Kendull Hunt Publishing Company.
  • Gavin, M. K., Casa, T., Adelson, J. L., Carroll, S. R., & Sheffield, L. J. (2009). The impact of advanced curriculum on the achievement of mathematically promising elementary students, Gifted Child Quarterly, 53, 188-202.
  • Gredler, M. E. (1992). Learning and Instruction: Theory and Practice (2nd ed.) USA:Macmillan Publishing.
  • Hatfield, L. L. (2000). Perspectives on the field of mathematics education: toward global development and reconstruction. Proceedings of the Korean School Mathematics Society, 3, 1-8.
  • Hershkovitz, S., Peled, I., & Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 255-269). Rotterdam, Netherlands: Sense Publishers.
  • Johnson, D. T. (2000). Mathematics curriculum for the gifted: Comprehensive curriculum for gifted learners (2nd ed.), Ed. by J. VanTassel-Baska Allyn and Bacon, s. 234-255.
  • Maker, C. J. (1982). Curriculum development for the gifted. Rockville, MD: Aspen Systems Corporation.
  • Maker, C. J., & Schiever, S. W. (2005). Teaching models in education of the gifted (3rd ed.). Texas, TX: Pro-ed Inc.
  • Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London, England: Routledge & Kegan Paul.
  • Sak, U. (2011). Selective problem solving (SPS): A model for teaching treative problem solving. Gifted Education International, 27, 349-357.
  • Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing mathematical promise in K-8 pupils. Thousand Oaks, CA: Corwin Pres.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Starko, A. (2005). Creativity in the classroom: Schools of curious delight (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Tanner, D., & Tanner, L. M. (1980). Curriculum development: Theory into practice (2nd ed.). New York: Macmillan.
  • Tomlinson, C. A. (2001). How to differentiate instruction in mixed-ability classrooms.
  • Alexandria, VA: Association for Supervision and Curriculum Development.
  • Van Tassel-Baska, J., & Little, C. A. (2003). Content-based curriculum for high- ability learners. Waco, TX: Prufrock Press.
  • Van Tassel-Baska, J. & Stambaugh, T. (2006). Comprehensive Curriculum for Gifted Learners. (3rd ed.). Boston: Pearson Education Inc.
  • Weaver, J. H. (2004). Matematik kaşifi, B. Şipal ve B. Akalın (Çev.). İstanbul: Güncel Yayıncılık.

Differentiation of Math Curriculum For Gifted Students

Yıl 2016, Cilt: 13 Sayı: 2, 115 - 128, 27.10.2016

Öz

Gifted and talented students need
educational opportunities and environments adequate to their cognitive
characteristics during their education. Differentiation of math curriculum is a
vital topic regarding the importance of mathematics as a science which has been
playing an important role during the development and presence of humanity.
Besides, math education is a field in which individual and cognitive
differences ocularly stand out. In this respect the aim of the study is to
discuss the importance of differentiation of math curriculum, to present
significant and useful examples on math differentiation and to explain the
common elements of those examples on behalf of providing educational
opportunities to gifted students with which they can nurture their potential.

Kaynakça

  • Anderson L. W. & Krathwohl, D. R. (2010). Bloom’un eğitim hedefleri ile i̇lgili sınıflamasının güncelleştirilmiş biçimi. Durmuş Ali Özçelik (Çev.). Ankara: Pegem Akademi.
  • Banks, J. A. (1990). Teaching strategies for the social studies: Inquiry, valuing, and decision-making (4th edition). New York: Longman.
  • Chapin, S., O’Connor, C., & Anderson, N. (2003). Classroom discussions: Using math talk to help students learn: Grades K–6. Sausalito, CA: Math Solutions.
  • Davis, G. A., Rimm, S. B., & Siegle, D. (2013). Education of the gifted and talented (6th ed.). England: Pearson Education Limited.
  • Ervynck, G. (2002). Mathematical Creativity. In. D. Tall (Ed.), Advanced Mathematical Thinking (pp. 42 – 52). New York, NY: Kluwer Academic Publishers.
  • Gavin, M. K., Sheffield, L. J., Chapin, S. H. ve Dailey, J. (2008). Project M3: Record Makers and Breakers: Using Algebra to Analyze Change; At the Mall with Algebra: Working with Variables and Equations. Iowa: Kendull Hunt Publishing Company.
  • Gavin, M. K., Casa, T., Adelson, J. L., Carroll, S. R., & Sheffield, L. J. (2009). The impact of advanced curriculum on the achievement of mathematically promising elementary students, Gifted Child Quarterly, 53, 188-202.
  • Gredler, M. E. (1992). Learning and Instruction: Theory and Practice (2nd ed.) USA:Macmillan Publishing.
  • Hatfield, L. L. (2000). Perspectives on the field of mathematics education: toward global development and reconstruction. Proceedings of the Korean School Mathematics Society, 3, 1-8.
  • Hershkovitz, S., Peled, I., & Littler, G. (2009). Mathematical creativity and giftedness in elementary school: Task and teacher promoting creativity for all. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 255-269). Rotterdam, Netherlands: Sense Publishers.
  • Johnson, D. T. (2000). Mathematics curriculum for the gifted: Comprehensive curriculum for gifted learners (2nd ed.), Ed. by J. VanTassel-Baska Allyn and Bacon, s. 234-255.
  • Maker, C. J. (1982). Curriculum development for the gifted. Rockville, MD: Aspen Systems Corporation.
  • Maker, C. J., & Schiever, S. W. (2005). Teaching models in education of the gifted (3rd ed.). Texas, TX: Pro-ed Inc.
  • Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London, England: Routledge & Kegan Paul.
  • Sak, U. (2011). Selective problem solving (SPS): A model for teaching treative problem solving. Gifted Education International, 27, 349-357.
  • Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing mathematical promise in K-8 pupils. Thousand Oaks, CA: Corwin Pres.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Starko, A. (2005). Creativity in the classroom: Schools of curious delight (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Tanner, D., & Tanner, L. M. (1980). Curriculum development: Theory into practice (2nd ed.). New York: Macmillan.
  • Tomlinson, C. A. (2001). How to differentiate instruction in mixed-ability classrooms.
  • Alexandria, VA: Association for Supervision and Curriculum Development.
  • Van Tassel-Baska, J., & Little, C. A. (2003). Content-based curriculum for high- ability learners. Waco, TX: Prufrock Press.
  • Van Tassel-Baska, J. & Stambaugh, T. (2006). Comprehensive Curriculum for Gifted Learners. (3rd ed.). Boston: Pearson Education Inc.
  • Weaver, J. H. (2004). Matematik kaşifi, B. Şipal ve B. Akalın (Çev.). İstanbul: Güncel Yayıncılık.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme
Yazarlar

Melodi Özyaprak

Yayımlanma Tarihi 27 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 13 Sayı: 2

Kaynak Göster

APA Özyaprak, M. (2016). ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI. HAYEF Journal of Education, 13(2), 115-128.
AMA Özyaprak M. ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI. HAYEF Journal of Education. Temmuz 2016;13(2):115-128.
Chicago Özyaprak, Melodi. “ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI”. HAYEF Journal of Education 13, sy. 2 (Temmuz 2016): 115-28.
EndNote Özyaprak M (01 Temmuz 2016) ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI. HAYEF Journal of Education 13 2 115–128.
IEEE M. Özyaprak, “ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI”, HAYEF Journal of Education, c. 13, sy. 2, ss. 115–128, 2016.
ISNAD Özyaprak, Melodi. “ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI”. HAYEF Journal of Education 13/2 (Temmuz 2016), 115-128.
JAMA Özyaprak M. ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI. HAYEF Journal of Education. 2016;13:115–128.
MLA Özyaprak, Melodi. “ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI”. HAYEF Journal of Education, c. 13, sy. 2, 2016, ss. 115-28.
Vancouver Özyaprak M. ÜSTÜN ZEKÂLI VE YETENEKLİ ÖĞRENCİLER İÇİN MATEMATİK MÜFREDATININ FARKLILAŞTIRILMASI. HAYEF Journal of Education. 2016;13(2):115-28.