M. Higashimura, Current-mode all pass filter using FTFN with grounded capacitor, Electron Lett 27 (1991), pp. 1182–1183.
M. Higashimura, Realization of current-mode transfer function using four terminal floating nullor, Electron Lett 27 (1991), pp. 170–171.
B. Chipipop and W. Surakampontorn, Realization of current-mode FTFN-based inverse filter, Electron Lett (1999), pp. 690–691.
U. Cam and H. Kuntman, A new CMOS realization of a four terminal floating nullor (FTFN), Int J Electron (2000), pp. 809–817.
O. Cicekoglu, Current-mode biquad with a minimum number of passive elements, IEEE Trans Circuits System II Analog Digital Signal Process 48 (2001), pp. 221–
F.A. Arie, Comments on current-mode biquad with a minimum number of passive elements, IEEE Trans Circuits System II Analog Digital Signal Process 49 (2002), p. 783.
N.A. Shah and M.A. Malik, A novel FTFN based universal cascadable current-mode biquad filter, Frequenz 57 (2003), pp. 166–167.
M.T. Abulma’atti and H.A. Al-Zaher, Universal two- input two-output current-mode active biquad using FTFNs, Int J Electron 86 (1999), pp. 181–188.
S.I. Liu, Cascadable current-mode filters using single FTFN, Electron Lett 31 (1995), pp. 1965–1966.
M.T. Abulma’atti, Cascadable current-mode filters using single FTFN, Electron Lett 32 (1996), pp. 1457–
S.I. Liu and C.-S.I.I. Hwang, Realization of current- mode filters using single FTFN, Int J Electron 82 (1997), pp. 499–502.
U. Cam, O. Cicekoglu and H. Kuntman, Current- mode single-input three output SITO universal filter employing FTFNs and reduced number of passive components, Frequenz 54 (2000), pp. 94–96.
O. Cicekoglu and H. Kuntman, A new four terminal floating nullor based single-input three-output current- mode multifunction filter, Microelectron J 30 (1999), pp. –118.
S.I. Liu and C.Y. Yang, High-input impedance filters using FTFNs, Int J Electron 84 (1998), pp. 595–
S.I. Liu and J.L. Lee, Insensitive current/voltage- mode filters using FTFNs, Electron Lett 32 (1996), pp. –1080. ,
U. Cam, O. Cicekoglu, M. Gulsoy and H. Kuntman, New voltage and current mode first order allpass filters using single FTFN, Frequenz 54 (2000), pp. 177–179.
O. Cicekoglu, S. Ozcan and H. Kuntman, Insensitive multifunction filter implemented with current conveyors and only grounded passive elements, Frequenz 53 (1999), pp. 158–160.
M. Higashimura and Y. Fukui, Realization of all- pass and notch filters using a single current conveyor, Int J Electron 65 (1988), pp. 823–828.
A. Fabre, F. Dayoub, L. Duruisseau and M. Kamou, High-input impedance insensitive second-order using filters implemented from current conveyors, IEEE Trans CAS-I, Fund Theories Appl 41 (1994), pp. 918–921.
J.W. Horng, Inverting and/or non-inverting biquad circuit using second-generation current conveyors, Int J Electron 86 (1999), pp. 297–303.
A.M. Soliman, New inverting-non-inverting bandpass and lowpass biquad circuit using current conveyors, Int J Electron 81 (1996), pp. 577–583.
J.W. Horng, Voltage-mode universal biquadratic filter with one input and five outputs using OTAs, Int J Electron 89 (2002), pp. 729–737.
C.T. Lee and H.Y. Wang, Minimum realization for FTFN-based SRCO, Electron Lett 37 (2001), pp. 1207–
M. Higashimura, Current-mode all pass filter using FTFN with grounded capacitor, Electron Lett 27 (1991), pp. 1182–1183.
M. Higashimura, Realization of current-mode transfer function using four terminal floating nullor, Electron Lett 27 (1991), pp. 170–171.
B. Chipipop and W. Surakampontorn, Realization of current-mode FTFN-based inverse filter, Electron Lett (1999), pp. 690–691.
U. Cam and H. Kuntman, A new CMOS realization of a four terminal floating nullor (FTFN), Int J Electron (2000), pp. 809–817.
O. Cicekoglu, Current-mode biquad with a minimum number of passive elements, IEEE Trans Circuits System II Analog Digital Signal Process 48 (2001), pp. 221–
F.A. Arie, Comments on current-mode biquad with a minimum number of passive elements, IEEE Trans Circuits System II Analog Digital Signal Process 49 (2002), p. 783.
N.A. Shah and M.A. Malik, A novel FTFN based universal cascadable current-mode biquad filter, Frequenz 57 (2003), pp. 166–167.
M.T. Abulma’atti and H.A. Al-Zaher, Universal two- input two-output current-mode active biquad using FTFNs, Int J Electron 86 (1999), pp. 181–188.
S.I. Liu, Cascadable current-mode filters using single FTFN, Electron Lett 31 (1995), pp. 1965–1966.
M.T. Abulma’atti, Cascadable current-mode filters using single FTFN, Electron Lett 32 (1996), pp. 1457–
S.I. Liu and C.-S.I.I. Hwang, Realization of current- mode filters using single FTFN, Int J Electron 82 (1997), pp. 499–502.
U. Cam, O. Cicekoglu and H. Kuntman, Current- mode single-input three output SITO universal filter employing FTFNs and reduced number of passive components, Frequenz 54 (2000), pp. 94–96.
O. Cicekoglu and H. Kuntman, A new four terminal floating nullor based single-input three-output current- mode multifunction filter, Microelectron J 30 (1999), pp. –118.
S.I. Liu and C.Y. Yang, High-input impedance filters using FTFNs, Int J Electron 84 (1998), pp. 595–
S.I. Liu and J.L. Lee, Insensitive current/voltage- mode filters using FTFNs, Electron Lett 32 (1996), pp. –1080. ,
U. Cam, O. Cicekoglu, M. Gulsoy and H. Kuntman, New voltage and current mode first order allpass filters using single FTFN, Frequenz 54 (2000), pp. 177–179.
O. Cicekoglu, S. Ozcan and H. Kuntman, Insensitive multifunction filter implemented with current conveyors and only grounded passive elements, Frequenz 53 (1999), pp. 158–160.
M. Higashimura and Y. Fukui, Realization of all- pass and notch filters using a single current conveyor, Int J Electron 65 (1988), pp. 823–828.
A. Fabre, F. Dayoub, L. Duruisseau and M. Kamou, High-input impedance insensitive second-order using filters implemented from current conveyors, IEEE Trans CAS-I, Fund Theories Appl 41 (1994), pp. 918–921.
J.W. Horng, Inverting and/or non-inverting biquad circuit using second-generation current conveyors, Int J Electron 86 (1999), pp. 297–303.
A.M. Soliman, New inverting-non-inverting bandpass and lowpass biquad circuit using current conveyors, Int J Electron 81 (1996), pp. 577–583.
J.W. Horng, Voltage-mode universal biquadratic filter with one input and five outputs using OTAs, Int J Electron 89 (2002), pp. 729–737.
C.T. Lee and H.Y. Wang, Minimum realization for FTFN-based SRCO, Electron Lett 37 (2001), pp. 1207–
Kaçar, F. (2012). HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP. IU-Journal of Electrical & Electronics Engineering, 8(2), 643-648.
AMA
Kaçar F. HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP. IU-Journal of Electrical & Electronics Engineering. Ocak 2012;8(2):643-648.
Chicago
Kaçar, Fırat. “HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP”. IU-Journal of Electrical & Electronics Engineering 8, sy. 2 (Ocak 2012): 643-48.
EndNote
Kaçar F (01 Ocak 2012) HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP. IU-Journal of Electrical & Electronics Engineering 8 2 643–648.
IEEE
F. Kaçar, “HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP”, IU-Journal of Electrical & Electronics Engineering, c. 8, sy. 2, ss. 643–648, 2012.
ISNAD
Kaçar, Fırat. “HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP”. IU-Journal of Electrical & Electronics Engineering 8/2 (Ocak 2012), 643-648.
JAMA
Kaçar F. HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP. IU-Journal of Electrical & Electronics Engineering. 2012;8:643–648.
MLA
Kaçar, Fırat. “HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP”. IU-Journal of Electrical & Electronics Engineering, c. 8, sy. 2, 2012, ss. 643-8.
Vancouver
Kaçar F. HIGH IMPEDANCE VOLTAGE-MODE MULTIFUNCTION FILTERS IMPLEMENTED BY FTFNs AND OP-AMP. IU-Journal of Electrical & Electronics Engineering. 2012;8(2):643-8.