İnceleme Makalesi
BibTex RIS Kaynak Göster

E-Ticarette Dijital Dönüşüm: Yapay Zekâ Destekli Lojistik Modellerinin Geleceği

Yıl 2025, Cilt: 6 Sayı: Özel Sayı, 89 - 108, 30.06.2025
https://doi.org/10.56203/iyd.1658714

Öz

E-ticaret sektöründe dijital dönüşüm süreci, lojistik ve tedarik zinciri yönetiminde yapay zekâ ve büyük veri analitiği kullanımını zorunlu hale getirmiştir. Bu çalışma, yapay zekâ destekli lojistik modellerinin e-ticaret sektöründeki uygulamalarını ve sağladığı avantajları literatür taraması ile incelemektedir. Yapılan araştırmada, yapay zekâ teknolojilerinin talep tahminleme, stok yönetimi, rota optimizasyonu, akıllı depo sistemleri, drone ve otonom araçlarla teslimat gibi birçok lojistik süreci optimize ettiği ve maliyetleri düşürdüğü tespit edilmiştir. Ayrıca, müşteri memnuniyetini artırmada akıllı dolaplar gibi alternatif teslimat çözümlerinin etkili olduğu belirlenmiştir. Bununla birlikte, yapay zekâ sistemlerinin yüksek yatırım maliyetleri, veri güvenliği riskleri, yasal regülasyonlar ve işgücü üzerindeki olumsuz etkileri gibi bazı zorluklar da bulunmaktadır. Sonuç olarak, e-ticaret sektöründeki işletmelerin dijital dönüşüm stratejilerini geliştirerek, yapay zekâ teknolojilerini proaktif bir şekilde benimsemesi ve bu süreçte karşılaşabilecekleri zorlukları aşmaya yönelik adımlar atması gerektiği önerilmiştir.

Kaynakça

  • Abrahamsson, M., Brege, S., & Norrman, A. (1998). Distribution channel reengineering – Organisational separation of distribution and sales functions in the European market. Transport Logistics, 1(4), 237–249.
  • Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023
  • Agarwal, A., & Alathur, S. (2023). Metaverse revolution and the digital transformation: Intersectional analysis of Industry 5.0. Transforming Government: People, Process and Policy, 17(4), 688–707.
  • Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Alcácer, V., & Cruz-Machado, V. (2019). Scanning the industry 4.0: A literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal, 22(3), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006
  • Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2), 323–346.
  • Bal, H. Ç., & Erkan, Ç. (2019). Industry 4.0 and competitiveness. Procedia Computer Science, 158, 625–631. https://doi.org/10.1016/j.procs.2019.09.096
  • Bernon, M., Cullen, J., & Gorst, J. (2016). Online retail returns management: Integration within an omni-channel distribution context. International Journal of Physical Distribution and Logistics Management, 46(6/7), 584–605.
  • Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482. https://www.jstor.org/stable/43825919
  • Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the supply chain: Consumer analytics in the big data era. International Journal of Forecasting, 35(1), 170–180. https://doi.org/10.1016/j.ijforecast.2018.09.003
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., ... & Trench, M. (2018). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
  • Büyüközkan, G., & Göçer, F. (2018). Digital supply chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010
  • Cao, L. (2014). Business model transformation in moving to a cross-channel retail strategy: A case study. International Journal of Electronic Commerce, 18(4), 69–96.
  • Cattaruzza, D., Absi, N., & Feillet, D. (2017). Vehicle routing problems with multiple trips. 4OR, 15(3), 223–259.
  • Chandna, V., & Salimath, M. S. (2018). Peer-to-peer selling in online platforms: A salient business model for virtual entrepreneurship. Journal of Business Research, 84, 162–174. https://doi.org/10.1016/j.jbusres.2017.11.019
  • Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503
  • Chi, N. T. K., & Nam, V. H. (2023). The impact of drone delivery innovation on customer intention: An empirical study in Vietnam. VNU University of Economics and Business, 3(2), 102–102. https://doi.org/10.57110/vnujeb.v3i2.153
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1883. https://doi.org/10.1111/poms.12838
  • Chopra, S., & Meindl, P. (2019). Supply chain management: Strategy, planning, and operation (7th ed.). Pearson Education.
  • Christopher, M. (2016). Logistics and supply chain management (5th ed.). Pearson.
  • Colla, E., & Lapoule, P. (2012). E-commerce: Exploring the critical success factors. International Journal of Retail & Distribution Management, 40(11), 842–864.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42.
  • Eğilmez, G. (2024). Sürdürülebilir akıllı lojistik. Duvar Yayınları.
  • Enriquea, D. V., Druczkoskia, J. C. M., Limaa, T. M., & Charrua-Santos, F. (2021). Advantages and difficulties of implementing Industry 4.0 technologies for labor flexibility. Procedia Computer Science, 181, 347–352.
  • Figliozzi, M. A. (2020). Autonomous delivery robots and their potential impacts on urban freight energy consumption and emissions. Transportation Research Part D: Transport and Environment, 86, 102460. https://doi.org/10.1016/j.trpro.2020.03.159
  • Fosso Wamba, S., Dubey, R., Gunasekaran, A., & Akter, S. (2021). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222, 107498. https://doi.org/10.1016/j.ijpe.2019.09.019
  • Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
  • Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the Far East. IDC.
  • Genç, E., & Tunalı, İ. (2022). Endüstri 4.0 ve lojistik 4.0 kapsamında akıllı depo sistemleri. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 9(4), 194–215.
  • Gevaers, R., Van de Voorde, E., & Vanelslander, T. (2014). Cost modelling and simulation of last-mile characteristics in an innovative B2C supply chain environment with implications on urban areas and cities. Procedia-Social and Behavioral Sciences, 125, 398–411. https://doi.org/10.1016/j.sbspro.2014.01.1483
  • GilPress. (2013). A very short history of big data. Forbes. https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/ (Erişim Tarihi: 5 Şubat 2025).
  • Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transportation Research Part D: Transport and Environment, 61, 58–67. https://doi.org/10.1016/j.trd.2017.02.017
  • Gu, Y., & Dong, S. (2016). Logistics cost management from the supply chain perspective. Journal of Service Science and Management, 9, 229–232. https://doi.org/10.4236/jssm.2016.93028
  • Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34. https://doi.org/10.1016/j.compind.2017.04.002
  • Hübner, A., Holzapfel, A., & Kuhn, H. (2015). Operations management in multi-channel retailing: An exploratory study. Operations Management Research, 8(3/4), 84–100.
  • Hübner, A., Kuhn, H., & Wollenburg, J. (2016). Last mile fulfilment and distribution in omni-channel grocery retailing. International Journal of Retail & Distribution Management, 44(3), 228–247. https://doi.org/10.1108/IJRDM-11-2014-0154
  • Ishfaq, R., Defee, C. C., Gibson, B. J., & Raja, U. (2016). Realignment of the physical distribution process in omni-channel fulfillment. International Journal of Physical Distribution and Logistics Management, 46(6/7), 543–561.
  • Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. International Journal of Production Research, 58(10), 2904–2915. https://doi.org/10.1080/00207543.2020.1750727
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on supply chain risk analytics. International Journal of Production Research, 57(3), 829–846. https://doi.org/10.1080/00207543.2018.1488086
  • Joerss, M., Schröder, J., Neuhaus, F., Klink, C., & Mann, F. (2016). Parcel delivery: The future of last mile. McKinsey & Company Report, 1–32.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013). Big data: Issues and challenges moving forward. In 46th Hawaii International Conference on System Sciences (pp. 995–1004).
  • Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967.
  • Kembro, J., & Norrman, A. (2019). Exploring trends, implications and challenges for logistics information systems in omni-channels: Swedish retailers’ perception. International Journal of Retail & Distribution Management, 47(4), 384–411.
  • Kostrzewski, M., Abdelatty, Y., Eliwa, A., & Nader, M. (2022). Analysis of modern vs. conventional development technologies in transportation—The case study of a last-mile delivery process. Sensors, 22(24), 9858. https://doi.org/10.3390/s22249858
  • Kshetri, N. (2018). Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005
  • Laudon, K. C., & Traver, C. G. (2021). E-commerce: Business, technology, society. Pearson.
  • LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.
  • Lim, S. F. W. T., Jin, X., & Srai, J. S. (2018). Consumer-driven e-commerce and last-mile logistics. International Journal of Physical Distribution & Logistics Management, 48(3), 308–332. https://doi.org/10.1108/IJPDLM-02-2017-0081
  • Loshin, D. (2013). Big data analytics: From strategic planning to enterprise integration with tools, techniques, NoSQL, and graph. Morgan Kaufmann.
  • Mahar, S., Wright, P. D., Bretthauer, K. M., & Hill, R. P. (2014). Optimizing marketer costs and consumer benefits across ‘clicks’ and ‘bricks’. Journal of the Academy of Marketing Science, 42(6), 619–641.
  • Mangiaracina, R., Perego, A., Seghezzi, A., & Tumino, A. (2019). Innovative solutions to increase last-mile delivery efficiency. International Journal of Physical Distribution & Logistics Management, 49(9), 901–935.
  • McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
  • McKinsey Global Institute. (2018). Analytics comes of age. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx (Erişim Tarihi: 10 Şubat 2025).
  • Moroz, M., & Polkowski, Z. (2016). The last mile issue and urban logistics: Choosing parcel machines in the context of the ecological attitudes of the Y generation consumers purchasing online. Transportation Research Procedia, 16, 378–393. https://doi.org/10.1016/j.trpro.2016.11.036
  • Murray, C. C., & Chu, A. G. (2015). Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005
  • Narkhede, G. B., Pasi, B. N., Rajhans, N., & Kulkarni, A. (2024). Industry 5.0 and sustainable manufacturing: A systematic literature review. Benchmarking: An International Journal.
  • Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2020). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 119, 104898. https://doi.org/10.1016/j.cor.2017.07.004
  • Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
  • Pacchini, A. P. T., Lucato, W. C., Facchini, F., & Mummolo, G. (2019). The degree of readiness for the implementation of Industry 4.0. Computers in Industry, 113, 103125. https://doi.org/10.1016/j.compind.2019.103125
  • Ranieri, L., Digiesi, S., Silvestri, B., & Roccotelli, M. (2018). A review of last-mile logistics innovations in an externalities cost reduction vision. Sustainability, 10(3), 782. https://doi.org/10.3390/su10030782
  • Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
  • Russom, P. (2011). Big data analytics. TDWI Best Practices Report, 4th Quarter, 1–35.
  • Sanders, N. R. (2016). How to use big data to drive your supply chain. California Management Review, 58(3), 26–48. https://doi.org/10.1525/cmr.2016.58.3.26
  • Sarkis, J. (2017). Green supply chain management: The role of logistics service providers. Transportation Research Part E: Logistics and Transportation Review, 98, 39–50. https://doi.org/10.4324/9781315233000
  • Savelsbergh, M., & Van Woensel, T. (2016). 50th anniversary invited article—City logistics: Challenges and opportunities. Transportation Science, 50(2), 579–590. https://doi.org/10.1287/trsc.2016.0675
  • Sharma, R., Kamble, S. S., & Gunasekaran, A. (2020). Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Computers and Electronics in Agriculture, 155, 103–120. https://doi.org/10.1016/j.compag.2018.10.001
  • Sternberg, H., & Andersson, M. (2014). Decentralized intelligence in freight transport—A critical review. Computers in Industry, 65(2), 306–313. https://doi.org/10.1016/j.compind.2013.11.011
  • Tiwari, S., Wee, H. M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers & Industrial Engineering, 115, 319–330. https://doi.org/10.1016/j.cie.2017.11.017
  • Tunji-Olayeni, P., Aigbavboa, C., Oke, A., & Chukwu, N. (2024). Research trends in industry 5.0 and its application in the construction industry. Technological Sustainability, 3(1), 1–23.
  • Turban, E., Outland, J., King, D., Lee, J. K., Liang, T. P., & Turban, D. C. (2018). Electronic commerce payment systems. Electronic Commerce 2018: A Managerial and Social Networks Perspective, 457–499.
  • Vakulenko, Y., Hellström, D., & Hjort, K. (2018). What's in the parcel locker? Exploring customer value in e-commerce last-mile delivery. Journal of Business Research, 88, 421–427. https://doi.org/10.1016/j.jbusres.2017.11.033
  • Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • Wang, X., & Disney, S. M. (2016). The bullwhip effect: Progress, trends and directions. European Journal of Operational Research, 250(3), 691–701. https://doi.org/10.1016/j.ejor.2015.07.022
  • Wang, X., Zhan, L., Ruan, J., & Zhang, J. (2018). How to choose “last mile” delivery modes for e-fulfillment. Mathematical Problems in Engineering, 2018, Article ID 8437649. https://doi.org/10.1155/2014/417129
  • Wang, Y., Singgih, M., Wang, J., & Rit, M. (2019a). Making sense of blockchain technology: How will it transform supply chains?. International Journal of Production Economics, 211, 221–236. https://doi.org/10.1016/j.ijpe.2019.02.002
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019b). Understanding blockchain technology for future supply chains: A systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62–84.
  • White, T. (2012). Hadoop: The definitive guide. O'Reilly Media.
  • Winkelhaus, S., & Grosse, E. H. (2020). Logistics 4.0: A systematic review towards a new logistics system. International Journal of Production Research, 58(1), 18–43.
  • Witkowski, K. (2017). Internet of Things, big data, Industry 4.0 – Innovative solutions in logistics and supply chains management. Procedia Engineering, 182, 763–769. https://doi.org/10.1016/j.proeng.2017.03.197
  • Wollenburg, J., Hübner, A., Kuhn, H., & Trautrims, A. (2018). From bricks-and-mortar to bricks-and-clicks: Logistics networks in omni-channel grocery retailing. International Journal of Physical Distribution & Logistics Management, 48(4), 415–438.
  • Zakir, J., Seymour, T., & Berg, K. (2015). Big data analytics. Issues in Information Systems, 16(2), 81–90.
  • Zhang, Y. (2019, October). The application of artificial intelligence in logistics and express delivery. In Journal of Physics: Conference Series (Vol. 1325, No. 1, p. 012085). IOP Publishing. https://doi.org/10.1088/1742-6596/1325/1/012085
  • Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 101, 572–591. https://doi.org/10.1016/j.cie.2016.07.013
  • Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
  • Zhou, L., Chong, A. Y. L., & Ngai, E. W. (2015). Supply chain management in the era of the internet of things. International Journal of Production Economics, 159, 1–3. http://dx.doi.org/10.1016/j.ijpe.2014.11.014

Digital Transformation in E-Commerce: The Future of Artificial Intelligence-Supported Logistics Models

Yıl 2025, Cilt: 6 Sayı: Özel Sayı, 89 - 108, 30.06.2025
https://doi.org/10.56203/iyd.1658714

Öz

The digital transformation process in the e-commerce industry has made the use of artificial intelligence (AI) and big data analytics essential in logistics and supply chain management. This study examines applications and benefits of AI-supported logistics models in e-commerce through a comprehensive literature review. The findings indicate that AI technologies significantly optimize logistics processes such as demand forecasting, inventory management, route optimization, intelligent warehouse systems, and deliveries using drones and autonomous vehicles, thereby reducing operational costs. Additionally, alternative delivery solutions like smart lockers have been identified as effective in enhancing customer satisfaction. Despite these benefits, the implementation of AI-driven logistics faces challenges such as high initial investment costs, data security risks, regulatory barriers, and adverse impacts on the workforce. Consequently, it is recommended that e-commerce businesses proactively embrace AI technologies by developing robust digital transformation strategies and taking measures to address potential implementation challenges.

Kaynakça

  • Abrahamsson, M., Brege, S., & Norrman, A. (1998). Distribution channel reengineering – Organisational separation of distribution and sales functions in the European market. Transport Logistics, 1(4), 237–249.
  • Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101, 528–543. https://doi.org/10.1016/j.cie.2016.09.023
  • Agarwal, A., & Alathur, S. (2023). Metaverse revolution and the digital transformation: Intersectional analysis of Industry 5.0. Transforming Government: People, Process and Policy, 17(4), 688–707.
  • Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113–131. https://doi.org/10.1016/j.ijpe.2016.08.018
  • Alcácer, V., & Cruz-Machado, V. (2019). Scanning the industry 4.0: A literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal, 22(3), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006
  • Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2), 323–346.
  • Bal, H. Ç., & Erkan, Ç. (2019). Industry 4.0 and competitiveness. Procedia Computer Science, 158, 625–631. https://doi.org/10.1016/j.procs.2019.09.096
  • Bernon, M., Cullen, J., & Gorst, J. (2016). Online retail returns management: Integration within an omni-channel distribution context. International Journal of Physical Distribution and Logistics Management, 46(6/7), 584–605.
  • Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482. https://www.jstor.org/stable/43825919
  • Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the supply chain: Consumer analytics in the big data era. International Journal of Forecasting, 35(1), 170–180. https://doi.org/10.1016/j.ijforecast.2018.09.003
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., ... & Trench, M. (2018). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
  • Büyüközkan, G., & Göçer, F. (2018). Digital supply chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157–177. https://doi.org/10.1016/j.compind.2018.02.010
  • Cao, L. (2014). Business model transformation in moving to a cross-channel retail strategy: A case study. International Journal of Electronic Commerce, 18(4), 69–96.
  • Cattaruzza, D., Absi, N., & Feillet, D. (2017). Vehicle routing problems with multiple trips. 4OR, 15(3), 223–259.
  • Chandna, V., & Salimath, M. S. (2018). Peer-to-peer selling in online platforms: A salient business model for virtual entrepreneurship. Journal of Business Research, 84, 162–174. https://doi.org/10.1016/j.jbusres.2017.11.019
  • Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503
  • Chi, N. T. K., & Nam, V. H. (2023). The impact of drone delivery innovation on customer intention: An empirical study in Vietnam. VNU University of Economics and Business, 3(2), 102–102. https://doi.org/10.57110/vnujeb.v3i2.153
  • Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1883. https://doi.org/10.1111/poms.12838
  • Chopra, S., & Meindl, P. (2019). Supply chain management: Strategy, planning, and operation (7th ed.). Pearson Education.
  • Christopher, M. (2016). Logistics and supply chain management (5th ed.). Pearson.
  • Colla, E., & Lapoule, P. (2012). E-commerce: Exploring the critical success factors. International Journal of Retail & Distribution Management, 40(11), 842–864.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24–42.
  • Eğilmez, G. (2024). Sürdürülebilir akıllı lojistik. Duvar Yayınları.
  • Enriquea, D. V., Druczkoskia, J. C. M., Limaa, T. M., & Charrua-Santos, F. (2021). Advantages and difficulties of implementing Industry 4.0 technologies for labor flexibility. Procedia Computer Science, 181, 347–352.
  • Figliozzi, M. A. (2020). Autonomous delivery robots and their potential impacts on urban freight energy consumption and emissions. Transportation Research Part D: Transport and Environment, 86, 102460. https://doi.org/10.1016/j.trpro.2020.03.159
  • Fosso Wamba, S., Dubey, R., Gunasekaran, A., & Akter, S. (2021). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222, 107498. https://doi.org/10.1016/j.ijpe.2019.09.019
  • Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
  • Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the Far East. IDC.
  • Genç, E., & Tunalı, İ. (2022). Endüstri 4.0 ve lojistik 4.0 kapsamında akıllı depo sistemleri. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 9(4), 194–215.
  • Gevaers, R., Van de Voorde, E., & Vanelslander, T. (2014). Cost modelling and simulation of last-mile characteristics in an innovative B2C supply chain environment with implications on urban areas and cities. Procedia-Social and Behavioral Sciences, 125, 398–411. https://doi.org/10.1016/j.sbspro.2014.01.1483
  • GilPress. (2013). A very short history of big data. Forbes. https://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/ (Erişim Tarihi: 5 Şubat 2025).
  • Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transportation Research Part D: Transport and Environment, 61, 58–67. https://doi.org/10.1016/j.trd.2017.02.017
  • Gu, Y., & Dong, S. (2016). Logistics cost management from the supply chain perspective. Journal of Service Science and Management, 9, 229–232. https://doi.org/10.4236/jssm.2016.93028
  • Hofmann, E., & Rüsch, M. (2017). Industry 4.0 and the current status as well as future prospects on logistics. Computers in Industry, 89, 23–34. https://doi.org/10.1016/j.compind.2017.04.002
  • Hübner, A., Holzapfel, A., & Kuhn, H. (2015). Operations management in multi-channel retailing: An exploratory study. Operations Management Research, 8(3/4), 84–100.
  • Hübner, A., Kuhn, H., & Wollenburg, J. (2016). Last mile fulfilment and distribution in omni-channel grocery retailing. International Journal of Retail & Distribution Management, 44(3), 228–247. https://doi.org/10.1108/IJRDM-11-2014-0154
  • Ishfaq, R., Defee, C. C., Gibson, B. J., & Raja, U. (2016). Realignment of the physical distribution process in omni-channel fulfillment. International Journal of Physical Distribution and Logistics Management, 46(6/7), 543–561.
  • Ivanov, D., & Dolgui, A. (2020). Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. International Journal of Production Research, 58(10), 2904–2915. https://doi.org/10.1080/00207543.2020.1750727
  • Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on supply chain risk analytics. International Journal of Production Research, 57(3), 829–846. https://doi.org/10.1080/00207543.2018.1488086
  • Joerss, M., Schröder, J., Neuhaus, F., Klink, C., & Mann, F. (2016). Parcel delivery: The future of last mile. McKinsey & Company Report, 1–32.
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013). Big data: Issues and challenges moving forward. In 46th Hawaii International Conference on System Sciences (pp. 995–1004).
  • Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967.
  • Kembro, J., & Norrman, A. (2019). Exploring trends, implications and challenges for logistics information systems in omni-channels: Swedish retailers’ perception. International Journal of Retail & Distribution Management, 47(4), 384–411.
  • Kostrzewski, M., Abdelatty, Y., Eliwa, A., & Nader, M. (2022). Analysis of modern vs. conventional development technologies in transportation—The case study of a last-mile delivery process. Sensors, 22(24), 9858. https://doi.org/10.3390/s22249858
  • Kshetri, N. (2018). Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005
  • Laudon, K. C., & Traver, C. G. (2021). E-commerce: Business, technology, society. Pearson.
  • LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2010). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.
  • Lim, S. F. W. T., Jin, X., & Srai, J. S. (2018). Consumer-driven e-commerce and last-mile logistics. International Journal of Physical Distribution & Logistics Management, 48(3), 308–332. https://doi.org/10.1108/IJPDLM-02-2017-0081
  • Loshin, D. (2013). Big data analytics: From strategic planning to enterprise integration with tools, techniques, NoSQL, and graph. Morgan Kaufmann.
  • Mahar, S., Wright, P. D., Bretthauer, K. M., & Hill, R. P. (2014). Optimizing marketer costs and consumer benefits across ‘clicks’ and ‘bricks’. Journal of the Academy of Marketing Science, 42(6), 619–641.
  • Mangiaracina, R., Perego, A., Seghezzi, A., & Tumino, A. (2019). Innovative solutions to increase last-mile delivery efficiency. International Journal of Physical Distribution & Logistics Management, 49(9), 901–935.
  • McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
  • McKinsey Global Institute. (2018). Analytics comes of age. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx (Erişim Tarihi: 10 Şubat 2025).
  • Moroz, M., & Polkowski, Z. (2016). The last mile issue and urban logistics: Choosing parcel machines in the context of the ecological attitudes of the Y generation consumers purchasing online. Transportation Research Procedia, 16, 378–393. https://doi.org/10.1016/j.trpro.2016.11.036
  • Murray, C. C., & Chu, A. G. (2015). Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005
  • Narkhede, G. B., Pasi, B. N., Rajhans, N., & Kulkarni, A. (2024). Industry 5.0 and sustainable manufacturing: A systematic literature review. Benchmarking: An International Journal.
  • Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2020). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 119, 104898. https://doi.org/10.1016/j.cor.2017.07.004
  • Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. https://doi.org/10.1056/NEJMp1606181
  • Pacchini, A. P. T., Lucato, W. C., Facchini, F., & Mummolo, G. (2019). The degree of readiness for the implementation of Industry 4.0. Computers in Industry, 113, 103125. https://doi.org/10.1016/j.compind.2019.103125
  • Ranieri, L., Digiesi, S., Silvestri, B., & Roccotelli, M. (2018). A review of last-mile logistics innovations in an externalities cost reduction vision. Sustainability, 10(3), 782. https://doi.org/10.3390/su10030782
  • Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
  • Russom, P. (2011). Big data analytics. TDWI Best Practices Report, 4th Quarter, 1–35.
  • Sanders, N. R. (2016). How to use big data to drive your supply chain. California Management Review, 58(3), 26–48. https://doi.org/10.1525/cmr.2016.58.3.26
  • Sarkis, J. (2017). Green supply chain management: The role of logistics service providers. Transportation Research Part E: Logistics and Transportation Review, 98, 39–50. https://doi.org/10.4324/9781315233000
  • Savelsbergh, M., & Van Woensel, T. (2016). 50th anniversary invited article—City logistics: Challenges and opportunities. Transportation Science, 50(2), 579–590. https://doi.org/10.1287/trsc.2016.0675
  • Sharma, R., Kamble, S. S., & Gunasekaran, A. (2020). Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Computers and Electronics in Agriculture, 155, 103–120. https://doi.org/10.1016/j.compag.2018.10.001
  • Sternberg, H., & Andersson, M. (2014). Decentralized intelligence in freight transport—A critical review. Computers in Industry, 65(2), 306–313. https://doi.org/10.1016/j.compind.2013.11.011
  • Tiwari, S., Wee, H. M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers & Industrial Engineering, 115, 319–330. https://doi.org/10.1016/j.cie.2017.11.017
  • Tunji-Olayeni, P., Aigbavboa, C., Oke, A., & Chukwu, N. (2024). Research trends in industry 5.0 and its application in the construction industry. Technological Sustainability, 3(1), 1–23.
  • Turban, E., Outland, J., King, D., Lee, J. K., Liang, T. P., & Turban, D. C. (2018). Electronic commerce payment systems. Electronic Commerce 2018: A Managerial and Social Networks Perspective, 457–499.
  • Vakulenko, Y., Hellström, D., & Hjort, K. (2018). What's in the parcel locker? Exploring customer value in e-commerce last-mile delivery. Journal of Business Research, 88, 421–427. https://doi.org/10.1016/j.jbusres.2017.11.033
  • Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022
  • Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
  • Wang, X., & Disney, S. M. (2016). The bullwhip effect: Progress, trends and directions. European Journal of Operational Research, 250(3), 691–701. https://doi.org/10.1016/j.ejor.2015.07.022
  • Wang, X., Zhan, L., Ruan, J., & Zhang, J. (2018). How to choose “last mile” delivery modes for e-fulfillment. Mathematical Problems in Engineering, 2018, Article ID 8437649. https://doi.org/10.1155/2014/417129
  • Wang, Y., Singgih, M., Wang, J., & Rit, M. (2019a). Making sense of blockchain technology: How will it transform supply chains?. International Journal of Production Economics, 211, 221–236. https://doi.org/10.1016/j.ijpe.2019.02.002
  • Wang, Y., Han, J. H., & Beynon-Davies, P. (2019b). Understanding blockchain technology for future supply chains: A systematic literature review and research agenda. Supply Chain Management: An International Journal, 24(1), 62–84.
  • White, T. (2012). Hadoop: The definitive guide. O'Reilly Media.
  • Winkelhaus, S., & Grosse, E. H. (2020). Logistics 4.0: A systematic review towards a new logistics system. International Journal of Production Research, 58(1), 18–43.
  • Witkowski, K. (2017). Internet of Things, big data, Industry 4.0 – Innovative solutions in logistics and supply chains management. Procedia Engineering, 182, 763–769. https://doi.org/10.1016/j.proeng.2017.03.197
  • Wollenburg, J., Hübner, A., Kuhn, H., & Trautrims, A. (2018). From bricks-and-mortar to bricks-and-clicks: Logistics networks in omni-channel grocery retailing. International Journal of Physical Distribution & Logistics Management, 48(4), 415–438.
  • Zakir, J., Seymour, T., & Berg, K. (2015). Big data analytics. Issues in Information Systems, 16(2), 81–90.
  • Zhang, Y. (2019, October). The application of artificial intelligence in logistics and express delivery. In Journal of Physics: Conference Series (Vol. 1325, No. 1, p. 012085). IOP Publishing. https://doi.org/10.1088/1742-6596/1325/1/012085
  • Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 101, 572–591. https://doi.org/10.1016/j.cie.2016.07.013
  • Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015
  • Zhou, L., Chong, A. Y. L., & Ngai, E. W. (2015). Supply chain management in the era of the internet of things. International Journal of Production Economics, 159, 1–3. http://dx.doi.org/10.1016/j.ijpe.2014.11.014
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Strateji, Yönetim ve Örgütsel Davranış (Diğer)
Bölüm Literatür Taraması
Yazarlar

Emine Genç 0000-0003-1178-6929

Heves Genç Bu kişi benim 0009-0000-2783-2585

Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 15 Mart 2025
Kabul Tarihi 21 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: Özel Sayı

Kaynak Göster

APA Genç, E., & Genç, H. (2025). E-Ticarette Dijital Dönüşüm: Yapay Zekâ Destekli Lojistik Modellerinin Geleceği. İzmir Yönetim Dergisi, 6(Özel Sayı), 89-108. https://doi.org/10.56203/iyd.1658714

Makalenizi sisteme yüklemeden önce mutlaka şablon'lardan ve yazım kurallarından faydalanınız. Yazım kurallarına uygun olmayan çalışmaların hakem süreci başlatılmayacaktır.