Araştırma Makalesi
BibTex RIS Kaynak Göster

Growth of harmonic functions on biregular trees

Yıl 2022, , 1 - 8, 13.05.2022
https://doi.org/10.13069/jacodesmath.1056555

Öz

On a biregular tree of degrees $q+1$ and $r+1$, we study the growth of two classes of harmonic functions. First, we prove that if $f$ is a bounded harmonic function on the tree and $x$, $y$ are two adjacent vertices, then $|f(x)-f(y)|\leq 2 (qr-1)\|f\|_\infty/((q+1)(r+1))$, thus generalizing a result of Cohen and Colonna for regular trees. Next, we prove that if $f$ is a positive harmonic function on the tree and $x$, $y$ are two vertices with $d(x,y)=2$, then $f(x)/(qr)\leq f(y)\leq qr\cdot f(x)$.

Kaynakça

  • [1] V. Anandam, Harmonic functions and potentials on finite and infinite networks, Springer, Heidelberg, Bologna (2011).
  • [2] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, New York (2001).
  • [3] N. L. Biggs, Discrete mathematics, Clarendon Press, Oxford University Press, New York (1985).
  • [4] P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math. 9 (1972) 203–270.
  • [5] J. M. Cohen, F. Colonna, The Bloch space of a homogeneous tree, Bol. Soc. Mat. Mex. 37 (1992) 63–82.
  • [6] E. Nelson, A proof of Liouville’s theorem, Proc. Amer. Math. Soc. 12(6) (1961) 995.
  • [7] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press (2000).
Yıl 2022, , 1 - 8, 13.05.2022
https://doi.org/10.13069/jacodesmath.1056555

Öz

Kaynakça

  • [1] V. Anandam, Harmonic functions and potentials on finite and infinite networks, Springer, Heidelberg, Bologna (2011).
  • [2] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, New York (2001).
  • [3] N. L. Biggs, Discrete mathematics, Clarendon Press, Oxford University Press, New York (1985).
  • [4] P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math. 9 (1972) 203–270.
  • [5] J. M. Cohen, F. Colonna, The Bloch space of a homogeneous tree, Bol. Soc. Mat. Mex. 37 (1992) 63–82.
  • [6] E. Nelson, A proof of Liouville’s theorem, Proc. Amer. Math. Soc. 12(6) (1961) 995.
  • [7] W. Woess, Random walks on infinite graphs and groups, Cambridge University Press (2000).
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Francisco Javier Gonzalez Vieli Bu kişi benim

Yayımlanma Tarihi 13 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Gonzalez Vieli, F. J. (2022). Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications, 9(2), 1-8. https://doi.org/10.13069/jacodesmath.1056555
AMA Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. Mayıs 2022;9(2):1-8. doi:10.13069/jacodesmath.1056555
Chicago Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications 9, sy. 2 (Mayıs 2022): 1-8. https://doi.org/10.13069/jacodesmath.1056555.
EndNote Gonzalez Vieli FJ (01 Mayıs 2022) Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications 9 2 1–8.
IEEE F. J. Gonzalez Vieli, “Growth of harmonic functions on biregular trees”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 9, sy. 2, ss. 1–8, 2022, doi: 10.13069/jacodesmath.1056555.
ISNAD Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications 9/2 (Mayıs 2022), 1-8. https://doi.org/10.13069/jacodesmath.1056555.
JAMA Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. 2022;9:1–8.
MLA Gonzalez Vieli, Francisco Javier. “Growth of Harmonic Functions on Biregular Trees”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 9, sy. 2, 2022, ss. 1-8, doi:10.13069/jacodesmath.1056555.
Vancouver Gonzalez Vieli FJ. Growth of harmonic functions on biregular trees. Journal of Algebra Combinatorics Discrete Structures and Applications. 2022;9(2):1-8.