A $*$-ring $R$ is called {\em strongly nil $*$-clean} if every element of $R$ is the sum of a
projection and a nilpotent element that commute with each other.
In this paper we investigate some properties of strongly nil
$*$-rings and prove that $R$ is a strongly nil $*$-clean ring if
and only if every idempotent in $R$ is a projection, $R$ is
periodic, and $R/J(R)$ is Boolean. We also prove that a $*$-ring
$R$ is
commutative, strongly nil $*$-clean and every primary ideal is maximal if and only if every element of $R$ is a projection.
Rings with involution Boolean ring Strongly nil *-clean ring *-Boolean ring
Konular | Mühendislik |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 11 Ocak 2017 |
Yayımlandığı Sayı | Yıl 2017 |