The Kite graph, denoted by $Kite_{p,q}$ is obtained by appending a complete graph $K_{p}$ to a pendant vertex of a path $P_{q}$. In this paper, firstly we show that no two non-isomorphic kite graphs are cospectral w.r.t the adjacency matrix. Let $G$ be a graph which is cospectral with $Kite_{p,q}$ and let $w(G)$ be the clique number of $G$. Then, it is shown that $w(G)\geq p-2q+1$. Also, we prove that $Kite_{p,2}$ graphs are determined by their adjacency spectrum.
Kite graph Cospectral graphs Clique number Determined by adjacency spectrum
| Konular | Mühendislik |
|---|---|
| Bölüm | Araştırma Makalesi |
| Yazarlar | |
| Yayımlanma Tarihi | 15 Mayıs 2016 |
| Yayımlandığı Sayı | Yıl 2016 Cilt: 3 Sayı: 2 |