Araştırma Makalesi
BibTex RIS Kaynak Göster

A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing

Yıl 2019, , 147 - 161, 13.09.2019
https://doi.org/10.13069/jacodesmath.617239

Öz

Secret sharing scheme is an efficient method to hide secret key or secret image by partitioning it into parts such that some predetermined subsets of partitions can recover the secret but remaining subsets cannot. In 1979, the pioneer construction on this area was given by Shamir and Blakley independently. After these initial studies, Asmuth-Bloom and Mignotte have proposed a different $(k,n)$ threshold modular secret sharing scheme by using the Chinese remainder theorem. In this study, we explore the generalization of Mignotte's scheme to Euclidean domains for which we obtain some promising results. Next, we propose new algorithms to construct threshold secret image sharing schemes by using Mignotte's scheme over polynomial rings. Finally, we compare our proposed scheme to the existing ones and we show that this new method is more efficient and it has higher security.

Kaynakça

  • [1] C. Asmuth, J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inform. Theory 29(2) (1983) 208–210.
  • [2] G. R. Blakley, Safeguarding cryptographic keys, Proc. Am. Federation of Information Processing Soc. (AFIPS’79) National Computer Conf. 48 (1979) 313–317.
  • [3] P. Dingyi, S. Arto, D. Cunsheng, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, World Scientific, 1996.
  • [4] T. Hungerford, Abstract Algebra: An Introduction, Cengage Learning, Boston, 2012.
  • [5] S. Iftene, General secret sharing based on the Chinese Remainder Theorem with applications in E–Voting, Electronic Notes in Theoretical Computer Science 186 (2007) 67–84.
  • [6] E. V. Krishnamurthy, Error–Free Polynomial Matrix Computations, Springer Science and Business Media, New York, 2012.
  • [7] J. B. Lima, R. M. Campello de Souza, Histogram uniformization for digital image encryption, 25th SIBGRAPI Conference on Graphics, Patterns and Images (2012) 55–62.
  • [8] P. K. Meher, J. C. Patra, A new approach to secure distributed storage, sharing and dissemination of digital image, IEEE International Symposium on Circuits and Systems (2006) 373-376.
  • [9] M. Mignotte, How to share a secret,In: Cryptography, EUROCRYPT 1982, Lecture Notes in Computer Science 149 (1983) 371–375.
  • [10] M. Naor, A. Shamir, Visual cryptography, In: Advances in Cryptology–EUROCRYPT 1994, Lecture Notes in Computer Science 950 (1994) 1–12.
  • [11] O. Ore, The general Chinese remainder theorem, The American Mathematical Monthly 59(6) (1952) 365–370.
  • [12] A. Shamir, How to share a secret, Comm. ACM 22(11) (1979) 612–613.
  • [13] S. J. Shyu, Y. R. Chen, Threshold secret image sharing by Chinese remainder theorem,IEEE Asia– Pacific Services Computing Conference (2008) 1332–1337.
  • [14] D. R. Stinson, An explication of secret sharing schemes, Des. Codes Cryptogr. 2(4) (1992) 357–390.
  • [15] S. Somaraj, M. A. Hussain, Performance and Security Analysis for Image Encryption using Key Image, Indian Journal of Science and Technology 8(35) (2015).
  • [16] G. Tatyana, M. Genadii, Generalized Mignotte’s sequences over polynomial rings, Electronic Notes in Theoretical Computer Science 186 (2007) 43–48.
  • [17] C. C. Thien, J. C. Lin, Secret image sharing, Comput. Graph. 26(5) (2002) 765–770.
  • [18] G. Ulutas, M. Ulutas, V. Nabiyev, Secret sharing scheme based on Mignotte’s scheme, 2011 IEEE 19th Signal Processing and Communications Applications Conference (2011) 291–294.
  • [19] R. Z. Wang, C. H. Su, Secret image sharing with smaller shadow images,Pattern Recognition Lett. 27(6) (2006) 551–555.
  • [20] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13(4) (2004) 600–612.
Yıl 2019, , 147 - 161, 13.09.2019
https://doi.org/10.13069/jacodesmath.617239

Öz

Kaynakça

  • [1] C. Asmuth, J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inform. Theory 29(2) (1983) 208–210.
  • [2] G. R. Blakley, Safeguarding cryptographic keys, Proc. Am. Federation of Information Processing Soc. (AFIPS’79) National Computer Conf. 48 (1979) 313–317.
  • [3] P. Dingyi, S. Arto, D. Cunsheng, Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography, World Scientific, 1996.
  • [4] T. Hungerford, Abstract Algebra: An Introduction, Cengage Learning, Boston, 2012.
  • [5] S. Iftene, General secret sharing based on the Chinese Remainder Theorem with applications in E–Voting, Electronic Notes in Theoretical Computer Science 186 (2007) 67–84.
  • [6] E. V. Krishnamurthy, Error–Free Polynomial Matrix Computations, Springer Science and Business Media, New York, 2012.
  • [7] J. B. Lima, R. M. Campello de Souza, Histogram uniformization for digital image encryption, 25th SIBGRAPI Conference on Graphics, Patterns and Images (2012) 55–62.
  • [8] P. K. Meher, J. C. Patra, A new approach to secure distributed storage, sharing and dissemination of digital image, IEEE International Symposium on Circuits and Systems (2006) 373-376.
  • [9] M. Mignotte, How to share a secret,In: Cryptography, EUROCRYPT 1982, Lecture Notes in Computer Science 149 (1983) 371–375.
  • [10] M. Naor, A. Shamir, Visual cryptography, In: Advances in Cryptology–EUROCRYPT 1994, Lecture Notes in Computer Science 950 (1994) 1–12.
  • [11] O. Ore, The general Chinese remainder theorem, The American Mathematical Monthly 59(6) (1952) 365–370.
  • [12] A. Shamir, How to share a secret, Comm. ACM 22(11) (1979) 612–613.
  • [13] S. J. Shyu, Y. R. Chen, Threshold secret image sharing by Chinese remainder theorem,IEEE Asia– Pacific Services Computing Conference (2008) 1332–1337.
  • [14] D. R. Stinson, An explication of secret sharing schemes, Des. Codes Cryptogr. 2(4) (1992) 357–390.
  • [15] S. Somaraj, M. A. Hussain, Performance and Security Analysis for Image Encryption using Key Image, Indian Journal of Science and Technology 8(35) (2015).
  • [16] G. Tatyana, M. Genadii, Generalized Mignotte’s sequences over polynomial rings, Electronic Notes in Theoretical Computer Science 186 (2007) 43–48.
  • [17] C. C. Thien, J. C. Lin, Secret image sharing, Comput. Graph. 26(5) (2002) 765–770.
  • [18] G. Ulutas, M. Ulutas, V. Nabiyev, Secret sharing scheme based on Mignotte’s scheme, 2011 IEEE 19th Signal Processing and Communications Applications Conference (2011) 291–294.
  • [19] R. Z. Wang, C. H. Su, Secret image sharing with smaller shadow images,Pattern Recognition Lett. 27(6) (2006) 551–555.
  • [20] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing 13(4) (2004) 600–612.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Ozbek Bu kişi benim

Fatih Temiz Bu kişi benim 0000-0001-5477-0463

İrfan Siap 0000-0002-9702-1531

Yayımlanma Tarihi 13 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Ozbek, İ., Temiz, F., & Siap, İ. (2019). A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing. Journal of Algebra Combinatorics Discrete Structures and Applications, 6(3), 147-161. https://doi.org/10.13069/jacodesmath.617239
AMA Ozbek İ, Temiz F, Siap İ. A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing. Journal of Algebra Combinatorics Discrete Structures and Applications. Eylül 2019;6(3):147-161. doi:10.13069/jacodesmath.617239
Chicago Ozbek, İbrahim, Fatih Temiz, ve İrfan Siap. “A Generalization of the Mignotte’s Scheme over Euclidean Domains and Applications to Secret Image Sharing”. Journal of Algebra Combinatorics Discrete Structures and Applications 6, sy. 3 (Eylül 2019): 147-61. https://doi.org/10.13069/jacodesmath.617239.
EndNote Ozbek İ, Temiz F, Siap İ (01 Eylül 2019) A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing. Journal of Algebra Combinatorics Discrete Structures and Applications 6 3 147–161.
IEEE İ. Ozbek, F. Temiz, ve İ. Siap, “A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 6, sy. 3, ss. 147–161, 2019, doi: 10.13069/jacodesmath.617239.
ISNAD Ozbek, İbrahim vd. “A Generalization of the Mignotte’s Scheme over Euclidean Domains and Applications to Secret Image Sharing”. Journal of Algebra Combinatorics Discrete Structures and Applications 6/3 (Eylül 2019), 147-161. https://doi.org/10.13069/jacodesmath.617239.
JAMA Ozbek İ, Temiz F, Siap İ. A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6:147–161.
MLA Ozbek, İbrahim vd. “A Generalization of the Mignotte’s Scheme over Euclidean Domains and Applications to Secret Image Sharing”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 6, sy. 3, 2019, ss. 147-61, doi:10.13069/jacodesmath.617239.
Vancouver Ozbek İ, Temiz F, Siap İ. A generalization of the Mignotte’s scheme over Euclidean domains and applications to secret image sharing. Journal of Algebra Combinatorics Discrete Structures and Applications. 2019;6(3):147-61.

Cited By

On modular (CRT-based) secret sharing
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-024-00530-4