Araştırma Makalesi
BibTex RIS Kaynak Göster

Constructions of MDS convolutional codes using superregular matrices

Yıl 2020, , 73 - 84, 29.02.2020
https://doi.org/10.13069/jacodesmath.645029

Öz

Maximum distance separable convolutional codes are the codes that present best performance in error correction among all convolutional codes with certain rate and degree. In this paper, we show that taking the constant matrix coefficients of a polynomial matrix as submatrices of a superregular matrix, we obtain a column reduced generator matrix of an MDS convolutional code with a certain rate and a certain degree. We then present two novel constructions that fulfill these conditions by considering two types of superregular matrices.

Destekleyen Kurum

Funda\c{c}\~ao para a Ci\^encia e a Tecnologia (FCT)

Proje Numarası

UID/MAT/04106/2019

Teşekkür

This work was supported by Funda\c{c}\~ao para a Ci\^encia e a Tecnologia (FCT) within project UID/MAT/04106/2019 (CIDMA) and the German Research Foundation (DFG) within grant LI3103/1-1.

Kaynakça

  • [1] P. J. Almeida, D. Napp, R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl. 439(7) (2013) 2145–2157.
  • [2] P. J. Almeida, D. Napp, R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl. 499 (2016) 1–25.
  • [3] J. Climent, D. Napp, C. Perea, R. Pinto, A construction of MDS 2D convolutional codes of rate $1/n$ based on superregular matrices, Linear Algebra Appl. 437(3) (2012) 766–780.
  • [4] J. Climent, D. Napp, C. Perea, R. Pinto, Maximum distance seperable 2D convolutional codes, IEEE Trans. Inform. Theory 62(2) (2016) 669–680.
  • [5] G. Forney, Convolutional codes I: Algebraic structure, IEEE Transactions on Information Theory, 16(6) (1970) 720–738. Correction, Ibid., IT-17, (1971) 360.
  • [6] H. Gluesing–Luerssen, B. Langfeld, A class of one–dimensional MDS convolutional codes, J. Algebra Appl. 5(4) (2006) 505–520.
  • [7] H. Gluesing–Luerssen, J. Rosenthal, R. Smarandache, Strongly–MDS convolutional codes, IEEE Trans. Inform. Theory 52(2) (2006) 584–598.
  • [8] R. Hutchinson, J. Rosenthal, R. Smarandache, Convolutional codes with maximum distance profile, Systems & Control Letters 54 (2005) 53–63.
  • [9] J. Justesen, An algebraic construction of rate $1/{\nu}$ convolutional codes, IEEE Trans. Inform. Theory 21(5) (1975) 577–580.
  • [10] T. Kailath, Linear Systems, Englewood Cliffs, N.J.: Prentice Hall, 1980.
  • [11] J. Lieb, Complete MDP convolutional codes, J. Algebra Appl. 18(6) (2019) 1950105 (13 pages).
  • [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, 6th ed. Amsterdam, The Netherlands: North–Holland, 1988.
  • [13] J. Rosenthal, R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput. 10(1) (1999) 15–32.
  • [14] R. Roth, A. Lempel, On MDS codes via Cauchy matrices, IEEE Trans. Inform. Theory 35(6) (1989) 1314–1319.
  • [15] R. Smarandache, H. Gluesing–Luerssen, J. Rosenthal, Constructions for MDS–convolutional codes, IEEE Trans. Inform. Theory 47(5) (2001) 2045–2049.
  • [16] R. Smarandache, J. Rosenthal, A state space approach for constructing MDS rate $1/n$ convolutional codes, Proceedings of the 1998 IEEE Information TheoryWorkshop on Information Theory, 116–117.
Yıl 2020, , 73 - 84, 29.02.2020
https://doi.org/10.13069/jacodesmath.645029

Öz

Proje Numarası

UID/MAT/04106/2019

Kaynakça

  • [1] P. J. Almeida, D. Napp, R. Pinto, A new class of superregular matrices and MDP convolutional codes, Linear Algebra Appl. 439(7) (2013) 2145–2157.
  • [2] P. J. Almeida, D. Napp, R. Pinto, Superregular matrices and applications to convolutional codes, Linear Algebra Appl. 499 (2016) 1–25.
  • [3] J. Climent, D. Napp, C. Perea, R. Pinto, A construction of MDS 2D convolutional codes of rate $1/n$ based on superregular matrices, Linear Algebra Appl. 437(3) (2012) 766–780.
  • [4] J. Climent, D. Napp, C. Perea, R. Pinto, Maximum distance seperable 2D convolutional codes, IEEE Trans. Inform. Theory 62(2) (2016) 669–680.
  • [5] G. Forney, Convolutional codes I: Algebraic structure, IEEE Transactions on Information Theory, 16(6) (1970) 720–738. Correction, Ibid., IT-17, (1971) 360.
  • [6] H. Gluesing–Luerssen, B. Langfeld, A class of one–dimensional MDS convolutional codes, J. Algebra Appl. 5(4) (2006) 505–520.
  • [7] H. Gluesing–Luerssen, J. Rosenthal, R. Smarandache, Strongly–MDS convolutional codes, IEEE Trans. Inform. Theory 52(2) (2006) 584–598.
  • [8] R. Hutchinson, J. Rosenthal, R. Smarandache, Convolutional codes with maximum distance profile, Systems & Control Letters 54 (2005) 53–63.
  • [9] J. Justesen, An algebraic construction of rate $1/{\nu}$ convolutional codes, IEEE Trans. Inform. Theory 21(5) (1975) 577–580.
  • [10] T. Kailath, Linear Systems, Englewood Cliffs, N.J.: Prentice Hall, 1980.
  • [11] J. Lieb, Complete MDP convolutional codes, J. Algebra Appl. 18(6) (2019) 1950105 (13 pages).
  • [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, 6th ed. Amsterdam, The Netherlands: North–Holland, 1988.
  • [13] J. Rosenthal, R. Smarandache, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput. 10(1) (1999) 15–32.
  • [14] R. Roth, A. Lempel, On MDS codes via Cauchy matrices, IEEE Trans. Inform. Theory 35(6) (1989) 1314–1319.
  • [15] R. Smarandache, H. Gluesing–Luerssen, J. Rosenthal, Constructions for MDS–convolutional codes, IEEE Trans. Inform. Theory 47(5) (2001) 2045–2049.
  • [16] R. Smarandache, J. Rosenthal, A state space approach for constructing MDS rate $1/n$ convolutional codes, Proceedings of the 1998 IEEE Information TheoryWorkshop on Information Theory, 116–117.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Julia Lieb Bu kişi benim 0000-0003-4211-1596

Raquel Pinto Bu kişi benim 0000-0002-8168-4023

Proje Numarası UID/MAT/04106/2019
Yayımlanma Tarihi 29 Şubat 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Lieb, J., & Pinto, R. (2020). Constructions of MDS convolutional codes using superregular matrices. Journal of Algebra Combinatorics Discrete Structures and Applications, 7(1), 73-84. https://doi.org/10.13069/jacodesmath.645029
AMA Lieb J, Pinto R. Constructions of MDS convolutional codes using superregular matrices. Journal of Algebra Combinatorics Discrete Structures and Applications. Şubat 2020;7(1):73-84. doi:10.13069/jacodesmath.645029
Chicago Lieb, Julia, ve Raquel Pinto. “Constructions of MDS Convolutional Codes Using Superregular Matrices”. Journal of Algebra Combinatorics Discrete Structures and Applications 7, sy. 1 (Şubat 2020): 73-84. https://doi.org/10.13069/jacodesmath.645029.
EndNote Lieb J, Pinto R (01 Şubat 2020) Constructions of MDS convolutional codes using superregular matrices. Journal of Algebra Combinatorics Discrete Structures and Applications 7 1 73–84.
IEEE J. Lieb ve R. Pinto, “Constructions of MDS convolutional codes using superregular matrices”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 1, ss. 73–84, 2020, doi: 10.13069/jacodesmath.645029.
ISNAD Lieb, Julia - Pinto, Raquel. “Constructions of MDS Convolutional Codes Using Superregular Matrices”. Journal of Algebra Combinatorics Discrete Structures and Applications 7/1 (Şubat 2020), 73-84. https://doi.org/10.13069/jacodesmath.645029.
JAMA Lieb J, Pinto R. Constructions of MDS convolutional codes using superregular matrices. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7:73–84.
MLA Lieb, Julia ve Raquel Pinto. “Constructions of MDS Convolutional Codes Using Superregular Matrices”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 7, sy. 1, 2020, ss. 73-84, doi:10.13069/jacodesmath.645029.
Vancouver Lieb J, Pinto R. Constructions of MDS convolutional codes using superregular matrices. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020;7(1):73-84.