Let $G$ be a simple undirected graph with each vertex colored
either white or black, $ u $ be a black vertex of $ G, $ and
exactly one neighbor $ v $ of $ u $ be white. Then change the
color of $ v $ to black. When this rule is applied, we say $ u $
forces $ v, $ and write $ u \rightarrow v $. A $zero\ forcing\ set$ of a graph $ G$ is a
subset $Z$ of vertices such that if initially the vertices in $ Z $ are colored
black and remaining vertices
are colored white, the entire graph $ G $ may be colored black
by repeatedly applying the
color-change rule.
The zero forcing number of $ G$, denoted $Z(G), $ is the minimum size of a
zero forcing set.\\
In this paper, we investigate the zero forcing number for the generalized Petersen graphs (It is denoted by $P(n,k)$). We obtain upper and lower bounds for the zero forcing number for $P(n,k)$. We show that $Z(P(n,2))=6$ for $n\geq 10$, $Z(P(n,3))=8$ for $n\geq 12$ and $Z(P(2k+1,k))=6$ for $k\geq 5$.
Zero forcing number Generalized Petersen graph Colin de Verdi\`{e}re parameter
This work was supported by Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 7 Mayıs 2020 |
Yayımlandığı Sayı | Yıl 2020 |