For a unitary right module $M$, there are two known partitions of
simple modules in the category $\sigma[M]$: the first one divides
them into $M$-injective modules and $M$-small modules, while the
second one divides them into $M$-projective modules and
$M$-singular modules. We study inclusions between the first two
and the last two classes of simple modules in terms of some
associated radicals and proper classes.
Radical Proper class Simple module Relative supplement submodule M-injective module M-projective module M-small module M-singular module
Konular | Mühendislik |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 10 Ocak 2017 |
Yayımlandığı Sayı | Yıl 2017 Cilt: 4 Sayı: 2 (Special Issue: Noncommutative rings and their applications) |