Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 5 Sayı: 3, 129 - 136, 08.10.2018
https://doi.org/10.13069/jacodesmath.458240

Öz

Kaynakça

  • [1] T. Bartnicki, B. Brešar, J. Grytczuk, M. Kovše, Z. Miechowicz, I. Peterin, Game chromatic number of Cartesian product graphs, Electron. J. Combin. 15 (2008) R72.
  • [2] H. L. Bodlaender, On the complexity of some coloring games, Int. J. Found. Comput. Sci. 2(2) (1991) 133–147.
  • [3] U. Faigle, U. Kern, H. Kierstead, W. T. Trotter, On the game chromatic number of some classes of graphs, Ars Combin. 35 (1993) 143–150.
  • [4] H. A. Kierstead, W. T. Trotter, Planar graph coloring with uncooperative partner, J. Graph Theory 18(6) (1994) 569–584.
  • [5] C. Sia, The game chromatic number of some families of Cartesian product graphs, AKCE Int. J. Graphs Comb. 6(2) (2009) 315–327.
  • [6] X. Zhu, Game coloring the Cartesian product of graphs, J. Graph Theory 59(4) (2008) 261–278.

Game chromatic number of Cartesian and corona product graphs

Yıl 2018, Cilt: 5 Sayı: 3, 129 - 136, 08.10.2018
https://doi.org/10.13069/jacodesmath.458240

Öz

The game chromatic number $\chi_g$ is investigated for Cartesian
product $G\square H$ and corona product $G\circ H$ of two graphs $G$
and $H$. The exact values for the game chromatic number of Cartesian
product graph of $S_{3}\square S_{n}$ is found, where $S_n$ is a
star graph of order $n+1$. This extends previous results of
Bartnicki et al. [1] and Sia [9] on the game chromatic
number of Cartesian product graphs. Let $P_m$ be the path graph on
$m$ vertices and $C_n$ be the cycle graph on $n$ vertices. We have
determined the exact values for the game chromatic number of corona
product graphs $P_{m}\circ K_{1}$ and $P_{m}\circ C_{n}$.

Kaynakça

  • [1] T. Bartnicki, B. Brešar, J. Grytczuk, M. Kovše, Z. Miechowicz, I. Peterin, Game chromatic number of Cartesian product graphs, Electron. J. Combin. 15 (2008) R72.
  • [2] H. L. Bodlaender, On the complexity of some coloring games, Int. J. Found. Comput. Sci. 2(2) (1991) 133–147.
  • [3] U. Faigle, U. Kern, H. Kierstead, W. T. Trotter, On the game chromatic number of some classes of graphs, Ars Combin. 35 (1993) 143–150.
  • [4] H. A. Kierstead, W. T. Trotter, Planar graph coloring with uncooperative partner, J. Graph Theory 18(6) (1994) 569–584.
  • [5] C. Sia, The game chromatic number of some families of Cartesian product graphs, AKCE Int. J. Graphs Comb. 6(2) (2009) 315–327.
  • [6] X. Zhu, Game coloring the Cartesian product of graphs, J. Graph Theory 59(4) (2008) 261–278.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Syed Ahtsham Ul Haq Bokhary

Tanveer Iqbal Bu kişi benim

Usman Ali Bu kişi benim

Yayımlanma Tarihi 8 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 3

Kaynak Göster

APA Bokhary, S. A. U. H., Iqbal, T., & Ali, U. (2018). Game chromatic number of Cartesian and corona product graphs. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(3), 129-136. https://doi.org/10.13069/jacodesmath.458240
AMA Bokhary SAUH, Iqbal T, Ali U. Game chromatic number of Cartesian and corona product graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. Ekim 2018;5(3):129-136. doi:10.13069/jacodesmath.458240
Chicago Bokhary, Syed Ahtsham Ul Haq, Tanveer Iqbal, ve Usman Ali. “Game Chromatic Number of Cartesian and Corona Product Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, sy. 3 (Ekim 2018): 129-36. https://doi.org/10.13069/jacodesmath.458240.
EndNote Bokhary SAUH, Iqbal T, Ali U (01 Ekim 2018) Game chromatic number of Cartesian and corona product graphs. Journal of Algebra Combinatorics Discrete Structures and Applications 5 3 129–136.
IEEE S. A. U. H. Bokhary, T. Iqbal, ve U. Ali, “Game chromatic number of Cartesian and corona product graphs”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 3, ss. 129–136, 2018, doi: 10.13069/jacodesmath.458240.
ISNAD Bokhary, Syed Ahtsham Ul Haq vd. “Game Chromatic Number of Cartesian and Corona Product Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/3 (Ekim 2018), 129-136. https://doi.org/10.13069/jacodesmath.458240.
JAMA Bokhary SAUH, Iqbal T, Ali U. Game chromatic number of Cartesian and corona product graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:129–136.
MLA Bokhary, Syed Ahtsham Ul Haq vd. “Game Chromatic Number of Cartesian and Corona Product Graphs”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 3, 2018, ss. 129-36, doi:10.13069/jacodesmath.458240.
Vancouver Bokhary SAUH, Iqbal T, Ali U. Game chromatic number of Cartesian and corona product graphs. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(3):129-36.