The ring of quasisymmetric functions is free over the ring of symmetric functions. This result was
previously proved by M. Hazewinkel combinatorially through constructing a polynomial basis for
quasisymmetric functions. The recent work by A. Savage and O. Yacobi on representation theory
provides a new proof to this result. In this paper, we proved that under certain conditions, the
positive part of a Heisenberg double is free over the positive part of the corresponding projective
Heisenberg double. Examples satisfying the above conditions are discussed.
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 9 Ağustos 2016 |
Yayımlandığı Sayı | Yıl 2016 Cilt: 3 Sayı: 3 |